MM1001

10W, 28V High Power RF LDMOS FETs

Description

The MM1001 is a 10-watt, highly rugged, unmatched LDMOS FET, designed for wide-band commercial and industrial applications at frequencies up to 2 GHz. It can be used in Class AB/B and Class C for all typical modulation formats.

• Typical narrow band Performance (On Innogration fixture with device soldered): $V_{DD} = 28 \text{ Volts}$, $I_{DQ} = 100 \text{ mA}$, CW.

Frequency	Gp (dB)	P _{-1dB} (W)	η _D @P ₋₁ (%)		
960 MHz	23	13	63		

• Typical broadband Performance (On Innogration fixture with device soldered):

V_{DD} = 28 Volts. I_{DO} = 100 mA. CW. Pin=28dBm

133 1311, 134 100 1111 1, 011, 111 111							
Frequency	Gp (dB)	Psat (W)	η _D @Psat(%)				
50-1500 MHz	12-14	11-16	>35				

Features

- High Efficiency and Linear Gain Operations
- Integrated ESD Protection
- Excellent thermal stability, low HCI drift

- Large Positive and Negative Gate/Source Voltage Range for Improved Class C Operation
- Pb-free, RoHS-compliant

Suitable Applications

- 2-30MHz (HF or Short wave communication)
- 30-88MHz (Ground communication)
- 54-88MHz (TV VHF I)
- 88-108MHz (FM)
- 118 -140MHz (Avionics)

- 136-174MHz (Commercial ground communication)
- 160-230MHz (TV VHF III)
- 30-512MHz (Jammer, Ground/Air communication)
- 470-860MHz (TV UHF)
- 100kHz 1000MHz (ISM, instrumentation)

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
DrainSource Voltage	V _{DSS}	+95	Vdc
GateSource Voltage	V_{GS}	-10 to +10	Vdc
Operating Voltage	V_{DD}	+40	Vdc
Storage Temperature Range	Tstg	-65 to +150	°C
Case Operating Temperature	Tc	+150	°C
Operating Junction Temperature	T₃	+225	°C

Table 2. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction to Case	Do 10	2	00/14/
T _C = 85°C, T _J =200°C, DC test	Rejc	3	°C/W

Table 3. ESD Protection Characteristics

Test Methodology Class

1 / 6

Document Number: MM1001 Product Datasheet V5.0

Human Body Model (per JESD22A114) Class 2							
Table 4. Electrical Characteristics (TA = 25 °C unless otherwise noted)							
Characteristic	Symbol	Min	Тур	Max	Unit		
DC Characteristics	·						
Drain-Source Voltage	V	00	0.7				
V _{GS} =0, I _{DS} =1.0mA	$V_{(BR)DSS}$	90	97		V		
Zero Gate Voltage Drain Leakage Current				1			
$(V_{DS} = 75V, V_{GS} = 0 V)$	I _{DSS}			ı	μΑ		
Zero Gate Voltage Drain Leakage Current	1			1	^		
$(V_{DS} = 28 \text{ V}, V_{GS} = 0 \text{ V})$	I _{DSS}			ı	μΑ		
GateSource Leakage Current	1			4			
$(V_{GS} = 10 \text{ V}, V_{DS} = 0 \text{ V})$	I _{GSS}			1	μА		
Gate Threshold Voltage	\/ (45)		2.07		V		
$(V_{DS} = 28V, I_{D} = 50 \mu A)$	V _{GS} (th)				v		
Gate Quiescent Voltage	V		3.3		V		
(V_{DD} = 28 V, I_D = 100 mA, Measured in Functional Test)	$V_{GS(Q)}$				V		
Common Source Input Capacitance			16.2		, r		
$(V_{GS} = 0V, V_{DS} = 28 V, f = 1 MHz)$	C _{ISS}		10.2		pF		
Common Source Output Capacitance	6		5.9		pF		
$(V_{GS} = 0V, V_{DS} = 28 V, f = 1 MHz)$	C _{oss}		5.9		ρг		
Common Source Feedback Capacitance			0.5		, r		
$(V_{GS} = 0V, V_{DS} = 28 V, f = 1 MHz)$	C _{RSS}		0.5		pF		
Functional Tests (In Demo Test Fixture, 50 ohm system) V_{DD}	= 28 Vdc, I _{DQ} = 100mA,	f = 960 MHz,	CW Signal Me	asurements.			
Power Gain	Gp		23		dB		
Drain Efficiency@P1dB	η _ο		63		%		
1 dB Compression Point	P _{-1dB}		13		W		
Input Return Loss	IRL		-7		dB		
Load Mismatch (In Innogration Test Fixture, 50 ohm system	m): V _{DD} = 28 Vdc, I _{DQ}	= 100 mA, f = 9	960 MHz				
VSWR 20:1 at 13W pulse CW Output Power No Device Degradation							

960MHz

TYPICAL CHARACTERISTICS

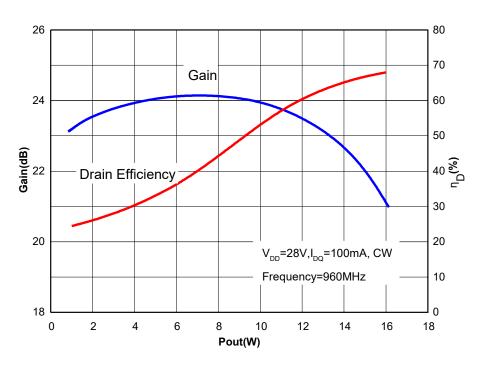


Figure 1. Power gain and drain efficiency as function of Power out

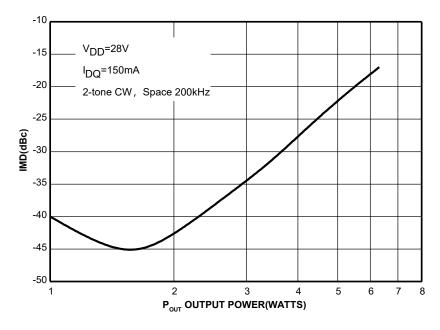
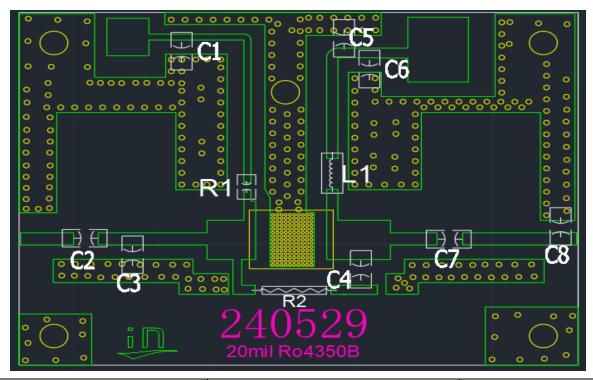
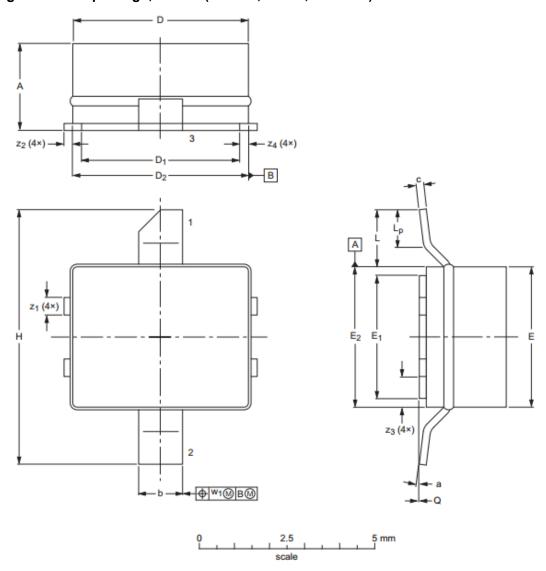



Figure 2. IMD3 versus Output Power

50-1500MHz


TYPICAL CHARACTERISTICS

Component	Description	Suggested Manufacturer
C1,C6	10nF 0805	
C2	120pF MQ300805	
C3	3.6pF MQ301111	
C4	150F MQ301111	
C5	240pF MQ300805	
C7	150F MQ300805	
C8	2.7pF MQ300805	
L1	0.5mm wire, 6Turns ,3.15m inner diameter,	DIY
R1	220Ω 0805	/
R2	330Ω/1W	/

Package Outline

Earless Flanged ceramic package; 2 leads(1-Drain,2-Gate,3-Source)

UNIT	A	b	С	D	D ₁	E	E ₁	E ₂	Н	L	L _P	q	W ₁	Z 1	Z 2	Z 3	Z 4	α
	2.34	1.35	0.23	5.16	4.65	4.14	3.63	4.14	7.49	2.03	1.02	0.1	0.25	0.58	0.25	0.97	0.51	7°
mm	2.13	1.19	0.18	5.00	4.50	3.99	3.48	3.99	7.24	1.27	0.51	0.0	0.25	0.43	0.18	0.81	0.00	0°

OUTLINE		REFERENCE		EUROPEAN		
VERSION	IEC	JEDEC	JEITA	PROJECTION	1330E DATE	
PKG-MM					18/6/2014	

Document Number: MM1001 Product Datasheet V5.0

Revision history

Table 5. Document revision history

Date	Revision	Datasheet Status
2015/4/29	Rev 1.0	Preliminary Datasheet
2016/8/8	Rev 2.0	Preliminary Datasheet
2016/11/23	Rev 3.0	Preliminary Datasheet
		Add test data and graph
2016/12/27	Rev 3.1	Preliminary Datasheet
		Add Thermal Resistance
2017/02/22	Rev 4.0	Product Datasheet
		Add CV parameter
2025/9/25	Rev 5.0	Add 50-1500M application data

Application based on SYX-25-36

Disclaimers

Specifications are subject to change without notice. Innogration believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Innogration for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Innogration . Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Innogration in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility. For any concerns or questions related to terms or conditions, pls check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.