
350W, 50V High Power RF LDMOS FETs

Description

The MX0535VPX is a 350-watt capable, high performance, unmatched LDMOS FET, designed for wide-band commercial and industrial applications with frequencies HF to 0.5 GHz

It is featured for high power and high ruggedness, suitable for Industrial, Scientific and Medical application, as well as FM radio, VHF TV and Aerospace applications.

• Typical narrowband performance(on 325/500MHz test board with device soldered): $V_{DD} = 50 \text{ Volts}, I_{DQ} = 200 \text{ mA}, CW.$

Freq	(MHz)	P3dB (W)	Gain (dB)	Eff (%)
32	5 380		16.2	67.3

Typical broadband performance(on 400-460MHz test board with device soldered):

MX	0535VPX ^G	W VGS=3.2	8V V	DS=48V	IDQ=10	0mA		CW
Freq (MHz)	Psat (dBm)	Psat (W)	IDS (A)	Pin (dBm)	Gain (dB)	Eff(%)	2nd (dBc)	3rd (dBc)
400	55.12	325.1	9.60	40.00	15.12	70.55	-21.20	-21.30
410	55.08	322.1	9.57	40.00	15.08	70.12	-21.50	-20.60
420	55.03	318.4	9.48	40.05	14.98	69.98	-21.50	-19.40
430	54.90	309.0	9.18	40.22	14.68	70.13	-20.80	-18.40
440	54.72	296.5	8.85	40.50	14.22	69.79	-20.90	-16.70
450	54.68	293.8	8.72	40.60	14.08	70.18	-21.80	-13.30
460	54.80	302.0	8.61	40.45	14.35	73.07	-23.20	-11.10

Features

- High Efficiency and Linear Gain Operations
- Integrated ESD Protection
- Excellent thermal stability, low HCI drift
- Large Positive and Negative Gate/Source Voltage Range for Improved Class C Operation
- Pb-free, RoHS-compliant

Suitable Applications

- 30-88MHz (Ground communication)
- 54-88MHz (TV VHF I)
- 88-108MHz (FM)
- 160-230MHz (TV VHF III)
- 136-174MHz (Commercial ground communication)
- Laser Exciter
- Synchrotron
- MRI
- · Plasma generator
- · Weather Radar

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
DrainSource Voltage	$V_{ t DSS}$	+135	Vdc
GateSource Voltage	$V_{\sf GS}$	-9 to +11	Vdc
Operating Voltage	V_{DD}	+55	Vdc

Document Number: MX0535VPX Preliminary Datasheet V1.1

Storage Temperature Range	Tstg	-65 to +150	°C
Case Operating Temperature	T _c	+150	°C
Operating Junction Temperature	T _J	+225	°C

Table 2. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction to Case	D. 19	0.05	0000
T _C = 85°C, T _J =200°C, DC test	ReJC	0.25	°C/W

Table 3. ESD Protection Characteristics

Test Methodology	Class	
Human Body Model (per JESD22A114)	Class 2	

Table 4. Electrical Characteristics ($T_A = 25$ °C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
DC Characteristics (per half section)					
Drain-Source Voltage	V _{(BR)DSS}		135		V
V _{GS} =0, I _{DS} =1.0Ma	V (BR)DSS		133		V
Zero Gate Voltage Drain Leakage Current				1	^
$(V_{DS} = 75V, V_{GS} = 0 V)$	I _{DSS}			ı	μΑ
Zero Gate Voltage Drain Leakage Current				1	^
$(V_{DS} = 50 \text{ V}, V_{GS} = 0 \text{ V})$	I _{DSS}			ı	μΑ
GateSource Leakage Current	I _{GSS}			1	μΑ
$(V_{GS} = 10 \text{ V}, V_{DS} = 0 \text{ V})$	IGSS			ı	μΑ
Gate Threshold Voltage	V _{GS} (th)		2.65		V
$(V_{DS} = 50V, I_D = 600 \mu A)$	V GS(III)		2.03		V
Gate Quiescent Voltage	$V_{GS(Q)}$		3.35		V
$(V_{DD} = 50 \text{ V}, I_D = 200 \text{ mA}, \text{Measured in Functional Test})$	V GS(Q)		0.00		V
Drain source on state resistance	Rds(on)		352		mΩ
(Vds=0.1V, Vgs=10V)	rtus(UII)		332		11152
Common Source Input Capacitance	C _{ISS}		141		pF
(V _{GS} = 0V, V _{DS} =50 V, f = 1 MHz)	OISS		141		рі
Common Source Output Capacitance	C _{oss}		42		pF
(V _{GS} = 0V, V _{DS} =50 V, f = 1 MHz)	Ooss		72		ρι
Common Source Feedback Capacitance	C _{RSS}		0.7		pF
$(V_{GS} = 0V, V_{DS} = 50 V, f = 1 MHz)$	ORSS		0.7		ρι

Load Mismatch (In Innogration Test Fixture, 50 ohm system): $V_{DD} = 50 \text{ Vdc}$, $I_{DQ} = 200 \text{ mA}$, f = 500 MHz, pulse width:100us, duty

Load 10:1 All phase angles, at 350W Pulsed CW Output Power

No Device Degradation

325MHz Reference Circuit of Test Fixture Assembly Diagram

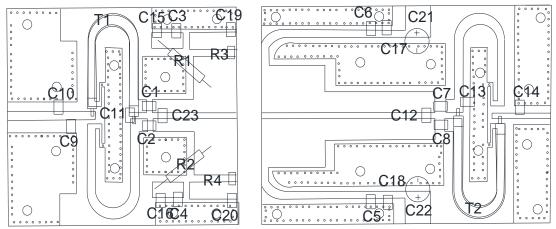


Figure 1. Test Circuit Component Layout (325M)

Table 1. Test Circuit Component Designations and Values (325M)

Part	description	Model
C1~C6	220PF	DLC70B
C13	3PF	DLC70B
C7, C8	100PF	ATC800B
C9	20PF	DLC70B
C10	1.5PF	DLC70B
C11	15PF	DLC70B
C12	12PF	DLC70B
C14	6.8PF	ATC800B
C15~c18	10UF	100V/10UF
C21, c22	470UF	63V/470UF
C23	18PF	DLC70B
R1	100Ω	
R2	16 Ω	1206
T1,T2	55mm	SF-86-25

TYPICAL CHARACTERISTICS

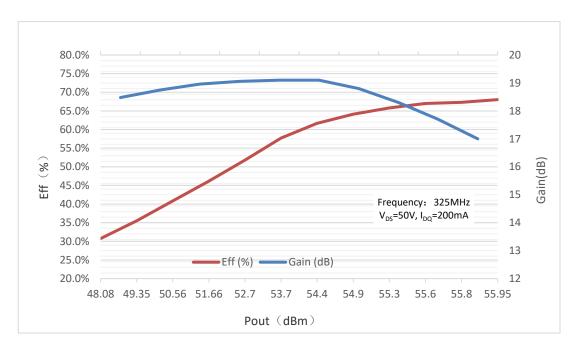


Figure 2: Power Gain and Drain Efficiency as Function of CW Power (325M)

400-460MHz Reference Circuit of Test Fixture Assembly Diagram

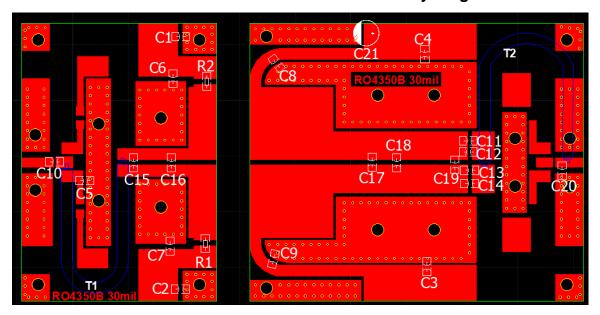


Figure 3. Test Circuit Component Layout (325M)

Table 2. Test Circuit Component Designations and Values (400-460M)

Component	Description	Suggestion	
C1~C5	10uF/200V-1210	Ceramic multilayer capacitor	
C6,C7	200pF		
C8, C9	560pF		
C10~C14	47pF		
C15	18pF		
C16	5.1pF		
C17	4.3pF		
C18,C20	0.5pF		
C19	6.8pF		
C21	470uF/63V	Electrolytic Capacitor	
T1	25ohm-60mm	RFSFBU-086-25	
T2	35ohm-65mm	SFF-35-3	
R1,R2	10 Ω -1206	chip resistor	

TYPICAL CHARACTERISTICS

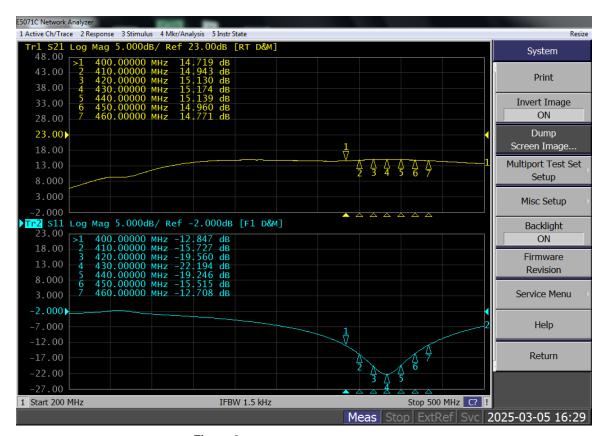
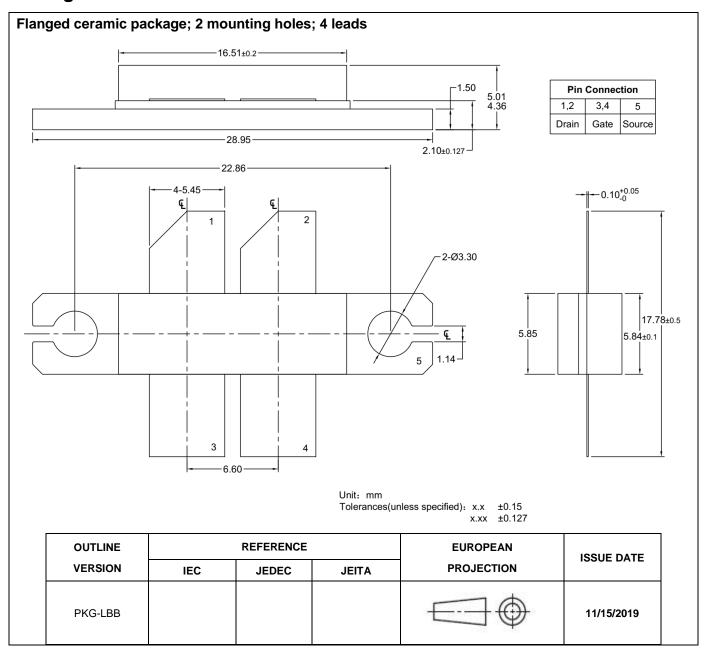



Figure 3: Network analyzer output S11/S21

Package Outline

Document Number: MX0535VPX Preliminary Datasheet V1.1

Revision history

Table 6. Document revision history

Date	Revision	Datasheet Status
2019/11/15	Rev 1.0	Preliminary Datasheet Creation
2024/7/6	Rev 1.1	Modify the typo of breakdown voltage
2025/3/7	Rev 1.2	Add 400-470MHz application data, remove 500MHz result

Application data based on TC-25-12

Disclaimers

Specifications are subject to change without notice. Innogration believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Innogration for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Innogration . Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Innogration in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility. For any concerns or questions related to terms or conditions, pls check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.