Document Number: MC1225S Product Datasheet V1.0

MC1225S

250W, Avionics High Power RF LDMOS FETs

Description

The MC1225S is a 250-watt, internally matched, single ended LDMOS FETs, designed for avionics application within 960-1220MHz. It can be used in Class AB/B and Class C for any pulse and CW signal.

•Typical Performance (On Innogration fixture with device soldered): V_{DD} = 28 Volts, I_{DQ} = 200 mA, Pulsed CW, 10% 100uS

Freq	P1dB	P1dB	P1dB	P3dB	P3dB
(MHz)	(W)	Eff(%)	Gain(dB)	(W)	Eff(%)
960	226.5	59	15.26	256	60
1090	222.7	55	15.75	252	56
1220	212.0	54	16.58	250	56

 V_{DD} = 32 Volts, I_{DQ} = 500 mA, CW.

Freq(MHz)	Pin(dBm)	Pout(dBm)	Pout(W)	IDS(A)	Power	Eff(%)
					Gain(dB)	
960	40.7	54.9	309.0	16.9	14.2	57.143
1030	39.6	54.4	275.4	15.7	14.8	54.821
1090	39.5	54.5	281.8	16.7	15	52.739
1160	39.8	54.5	281.8	17.6	14.7	50.042
1220	38.1	54.1	257.0	15.9	16	50.519

Features

- High Efficiency and Linear Gain Operations
- Integrated ESD Protection
- · Excellent thermal stability, low HCI drift
- **Suitable Applications**
 - L band avionics pulse or CW amplifier
 - ISM applications

- Pb-free, RoHS-compliant
- Large Positive and Negative Gate/Source Voltage Range for Improved Class C Operation

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
DrainSource Voltage	$V_{\scriptscriptstyle DSS}$	+65	Vdc
GateSource Voltage	V_{GS}	-10 to +10	Vdc
Operating Voltage	V_{DD}	+32	Vdc
Storage Temperature Range	Tstg	-65 to +150	°C
Case Operating Temperature	Tc	+150	°C
Operating Junction Temperature	T,	+225	°C

Table 2. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction to Case	Rejc	0.2	°C/W
T _C = 85°C, T _J =200°C, DC test	Keac	0.2	-C/VV

Document Number: MC1225S Product Datasheet V1.0

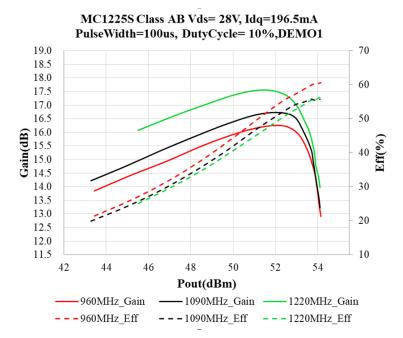
Table 3. ESD Protection Characteristics

Test Methodology	Class		
Human Body Model (per JESD22A114)	Class 2		

Table 4. Electrical Characteristics (TA = 25 °C unless otherwise noted)

Characteristic		Min	Тур	Max	Unit
DC Characteristics					
Zero Gate Voltage Drain Leakage Current				100	^
$(V_{DS} = 65V, V_{GS} = 0 V)$	I _{DSS}				μΑ
Zero Gate Voltage Drain Leakage Current				1	^
$(V_{DS} = 28 \text{ V}, V_{GS} = 0 \text{ V})$	Ipss			ı	μΑ
GateSource Leakage Current				1	^
$(V_{GS} = 10 \text{ V}, V_{DS} = 0 \text{ V})$	I _{GSS}			ı	μА
Gate Threshold Voltage	V _{GS} (th)		1.9		V
$(V_{DS} = 28V, I_D = 450 \mu A)$	V GS(UI)		1.9		V
Gate Quiescent Voltage	$V_{GS(Q)}$		2.72		V
$(V_{DD} = 28 \text{ V}, I_D = 200 \text{ mA}, \text{Measured in Functional Test})$	V GS(Q)		2.12		V

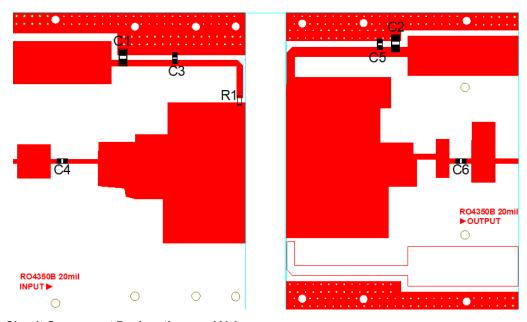
Functional Tests (On Demo Test Fixture, 50 ohm system) V_{DD} = 32 Vdc, I_{DQ} = 200 mA, f = 1220 MHz, Pulse CW Signal Measurements.


Power Gain	Gp		14	dB
Drain Efficiency@P1dB	η _D		50	%
3 dB Compression Point	P _{-3dB}	250		W
Input Return Loss	IRL		-4	dB

Load Mismatch (In Innogration Test Fixture, 50 ohm system): $V_{DD} = 32 \text{ Vdc}$, $I_{DQ} = 200 \text{ mA}$, f = 1220 MHz

VSWR 10:1 at 250W pulse CW Output Power No Device Degradation

TYPICAL CHARACTERISTICS


Figure 1. Power Gain and Drain Efficiency as Function of Pulse Output Power

Idq=500mA;Vgs=2.9V; Vds=28V Input Power=0dBm;4/20/2021 25.00 6.50 23.00 4.50 21.00 19.00 2.50 17.00 S21(dB) 0.50 15.00 -1.50 13.00 11.00 -3.50 9.00 -5.50 7.00 5.00 $0.60 \quad 0.70 \quad 0.80 \quad 0.90 \quad 1.00 \quad 1.10 \quad 1.20 \quad 1.30 \quad 1.40 \quad 1.50 \quad 1.60$ Freq(GHz) S11(dB) ——S21(dB)

Figure 2. Network analyzer output S11/S21 (VDS=32V IDQ=500mA VGS=2.9V)

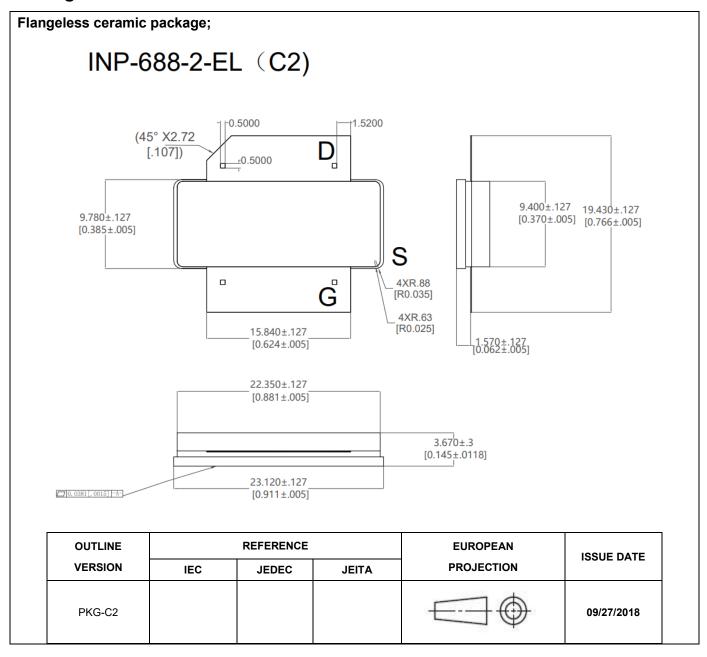

Figure 3. Test Circuit Component Layout

Table 4. Test Circuit Component Designations and Values

Component	Description	Suggested Manufacturer		
C1,C2	Ceramic multilayer capacitor, 10uF,	10uF/100V		
	100V			
C3,C4,C5,C6	33pF	ATC800B		
R1	Chip Resistor,9.1Ω,1206			
РСВ	20mil thickness, εr=3.5, Ro4350B, 1 oz. copper			

Package Outline

Document Number: MC1225S Product Datasheet V1.0

Revision history

Table 5. Document revision history

Date	Revision	Datasheet Status
2021/4/22	Rev 1.0	Product Datasheet

Application data based on JF-21-02

Disclaimers

Specifications are subject to change without notice. Innogration believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Innogration for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Innogration . Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Innogration in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility. For any concerns or questions related to terms or conditions, pls check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.