
1500W, 50V High Power RF LDMOS FETs

Description

The MQ051K5VPX is a 1500W capable, high performance, unmatched LDMOS FET, designed for commercial and industrial applications with frequencies HF to 225MHz. It can be used for both CW and pulse application.

It is featured for high power and high ruggedness, suitable for Industrial, Scientific and Medical application, as well as FM radio, HF communication, VHF TV and Aerospace applications.

Typical Performance (On Innogration FM band fixture with device soldered):

 $V_{DD} = 50 \text{ Volts}, I_{DQ} = 70 \text{ mA}, CW,$

Freq(MHz)	Pin(dBm)	Pout(W)	Gain(dB)	Eff(%)
88	44.1	1420	17.4	83%
98	45.7	1600	16.3	85%
108	46	1700	16.5	86%

Typical Performance (On Innogration narrowband fixture with device soldered):

 V_{DD} = 50 Volts, I_{DQ} = 200 mA, Pulsed CW: 100us, 10%

Freq(MHz)	Pin(dBm)	Pout(W)	Gain(dB)	Eff(%)		
13.56	36	1560	26	83.81		

Typical Performance (On Innogration narrowband fixture with device soldered):

 V_{DD} = 50 Volts, I_{DQ} = 200 mA, CW

Freq(MHz)	Pin(dBm)	Pout(W)	Gain(dB)	Eff(%)
162.5	45	1450	16.5	75

Features

- High Efficiency and Linear Gain Operations
- On chip RC network enable high stability and ruggedness
- Integrated ESD Protection
- Large Positive and Negative Gate/Source Voltage Range for Improved Class C Operation
- · Excellent thermal stability, low HCI drift
- Compliant to Restriction of Hazardous Substances (RoHS) Directive 2002/95/EC

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
DrainSource Voltage	V _{DSS}	135	Vdc
GateSource Voltage	V _{GS}	-10 to +10	Vdc
Operating Voltage	V _{DD}	+55	Vdc
Storage Temperature Range	Tstg	-65 to +150	°C
Case Operating Temperature	T _c	+150	°C
Operating Junction Temperature	T,	+225	°C

Table 2. Thermal Characteristics

Characteristic	Symbol	Value	Unit	
Thermal Resistance, Junction to Case ,Case Temperature	Do 10	0.09	°C/W	
85°C, 1500W CW, 50 Vdc, IDQ = 70 mA	Rejc	0.09	-0///	
Transient thermal impedance from junction to case	Zth	0.02	00/14/	
Tj = 150° C; tp = 100 us; Duty cycle = 20 %	ZIII	0.02	°C/W	

Table 3. ESD Protection Characteristics

Test Methodology	Class
Human Body Model (per JESD22A114)	Class 2

Table 4. Electrical Characteristics (TA = 25 $^{\circ}$ C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit	
DC Characteristics						
Drain-Source Voltage	\		135		V	
V _{GS} =0, I _{DS} =1.0mA	V _{(BR)DSS}		133		v	
Zero Gate Voltage Drain Leakage Current	loss			1	μΑ	
$(V_{DS} = 50V, V_{GS} = 0 V)$	IDSS			ı	μΑ	
Gate—Source Leakage Current	I _{GSS}			1		
$(V_{GS} = 10 \text{ V}, V_{DS} = 0 \text{ V})$	IGSS			I	μΑ	
Gate Threshold Voltage	V _{GS} (th)		2.54		V	
$(V_{DS} = 50V, I_D = 600 \mu A)$	V GS(U1)		2.04		V	
Gate Quiescent Voltage	$V_{GS(Q)}$		3		V	
(V _{DD} = 50 V, I _D = 70 mA, Measured in Functional Test)	V GS(Q)				V	
Drain source on state resistance	Rds(on)		72		mΩ	
$(V_{DS} = 0.1V, V_{GS} = 10 \text{ V})$ Each section side of device measured	rtu3(011)		12		11122	
Common Source Input Capacitance	C _{ISS}		520		pF	
(V _{GS} = 0V, V _{DS} =50 V, f = 1 MHz) Each section side of device						
measured						
Common Source Output Capacitance	Coss		143		pF	
(V _{GS} = 0V, V _{DS} =50 V, f = 1 MHz) Each section side of device						
measured						
Common Source Feedback Capacitance	C _{RSS}		1.4		pF	
(V _{GS} = 0V, V _{DS} =50 V, f = 1 MHz) Each section side of device						
measured						

TYPICAL CHARACTERISTICS

88-108MHz

Figure 2: Gain and Power Efficiency as a Function of Pout

Vds = 50 V, Idq = 70 mA,

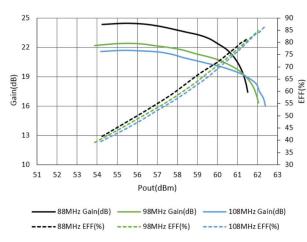
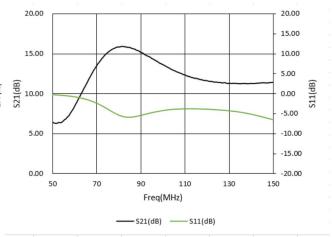



Figure 2: Network analyzer output S11/S21

Vds = 50 V, Idq = 500 mA,

13.56MHz

Figure 3: Gain and Power Efficiency as a Function of Pout

Vds = 50 V, Idq = 200 mA,

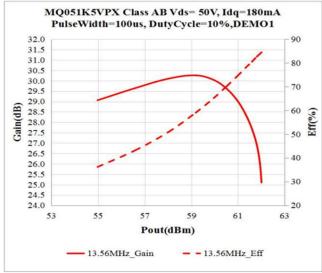
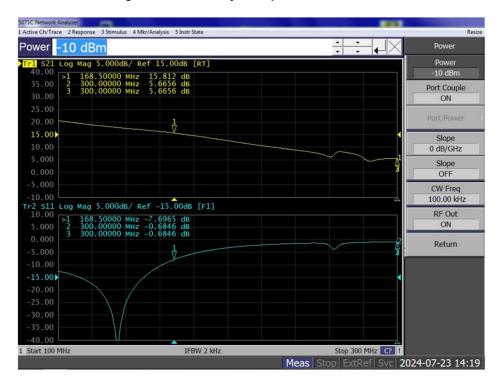


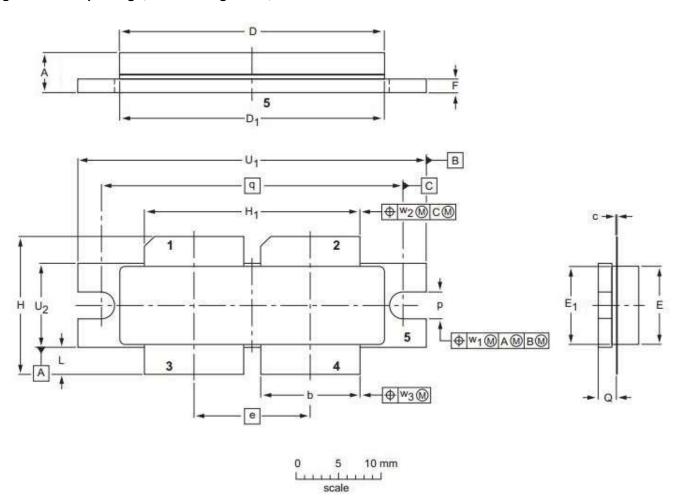
Figure 4: Network analyzer output S11/S21

Vds = 50 V, Idq = 500 mA,


MQ051K5VPX LDMOS TRANSISTOR Document Number: MQ051K5VPX Preliminary Datasheet V1.3

162.5MHz

Figure 5: Gain and Power Efficiency as a Function of Pout


Figure 6: Network analyzer output S11/S21

MQ051K5VPX LDMOS TRANSISTOR Document Number: MQ051K5VPX Preliminary Datasheet V1.3

Package Outline

Flanged ceramic package; 2 mounting holes; 4 leads (1, 2—DRAIN, 3, 4—GATE, 5—SOURCE)

UNIT	A	b	С	D	D ₁	е	E	E ₁	F	Н	H ₁	L	р	Q	q	U ₁	U ₂	W ₁	W ₂	W_2
	4.7	11.81	0.18	31.55	31.52	10.70	9.50	9.53	1.75	17.12	25.53	3.48	3.30	2.26	35.56	41.28	10.29	0.25	0.51	0.25
mm	4.2	11.56	0.10	30.94	30.96	13.72	9.30	9.27	1.50	16.10	25.27	2.97	3.05	2.01	35.56	41.02	10.03	0.25	0.51	0.25
h	0.185	0.465	0.007	1.242	1.241	0.540	0.374	0.375	0.069	0.674	1.005	0.137	0.130	0.089	4 400	1.625	0.405	0.04	0.00	0.04
inches	0.165	0.455	0.004	1.218	1.219	0.540	0.366	0.365	0.059	0.634	0.995	0.117	0.120	0.079	1.400	1.615	0.395	0.01	0.02	0.01

OUTLINE		REFERENCE		EUROPEAN	ISSUE DATE
VERSION	IEC	JEDEC	JEITA	PROJECTION	IOGGE BATE
PKG-D4E					03/12/2013

Revision history

Table 5. Document revision history

Date	Revision	Datasheet Status
2020/4/13	Rev 1.0	Preliminary Datasheet
2020/4/17	Rev 1.1	Update on capacitance
2021/9/22	Rev 1.2	Update based on latest 13.56MHz app data
2024/7/23	Rev 1.3	Update based on 162.5MHz app data

Application data based on GZY-20-15, HL-21-34, SJJ-24-02

Disclaimers

Specifications are subject to change without notice. Innogration believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Innogration for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Innogration . Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose."Typical" parameters are the average values expected by Innogration in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility. For any concerns or questions related to terms or conditions, pls check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.