
700W ,50V L band CW RF Power Transistor

Description

The STCV13700RC2 itself is a 700-watt capable, high performance, internal match, single ended GaN HEMT transistor, idea for RF Energy and ISM application at fixed frequency point or very narrow band within 0.9 to 1.3GHz, typically for 915MHz RF heating or 1.3G particle accelerator applications.

There is no guarantee of performance when this part is used outside of stated frequencies. It is recommended to use paired STCV13700RC2 to enable >1200W designed for ISM application. Compared to similar power level but in single dual-path packaged device, it offers better thermal management and easier maintenance.

Demonstration of paired STCV13700RC2(right) Vs single dual-path device(left) at 915MHz

Typical performance(on 1.3GHz narrow band application board with 2×STCV13700RC2 devices soldered)

V_{DS}=50V,Vgs=-4.5V, CW,

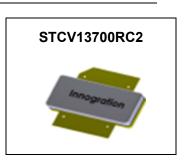
Freq(MHz)	P _{out} (W)	Pin(dBm)	Gain(dB)	η(%)
1300	1300	46.5	15	75

Applications

- 1.3GHz particle linear accelerator
- L band power amplifier
- Avionics application
- 915MHz RF heating

Important Note: Proper Biasing Sequence for GaN HEMT Transistors

Turning the device ON


- 1. Set VGS to the pinch--off (VP) voltage, typically –5 V
- 2. Turn on VDS to nominal supply voltage
- 3. Increase VGS until IDS current is attained
- 4. Apply RF input power to desired level

Turning the device OFF

- 1. Turn RF power off
- 2. Reduce VGS down to VP, typically -5 V
- 3. Reduce VDS down to 0 V
- 4. Turn off VGS

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
DrainSource Voltage	V_{DSS}	+200	Vdc
GateSource Voltage	V_{GS}	-8 to +0.5	Vdc
Operating Voltage	V_{DD}	55	Vdc
Maximum gate current	lgs	100	mA
Storage Temperature Range	Tstg	-65 to +150	°C

STCV13700RC2 LDMOS TRANSISTOR Document Number: STCV13700RC2

Document Number: STCV13700RC2 Preliminary Datasheet V1.0

Case Operating Temperature	T _C	+150	°C
Operating Junction Temperature	T_J	+225	°C

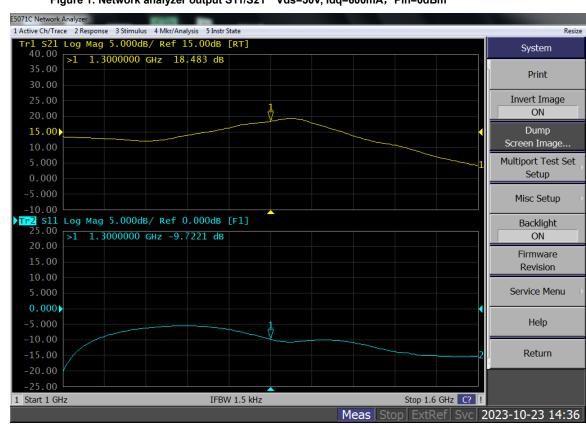
Table 2. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction to Case by FEA	Doug	0.22	°C /W
T _C = 25°C, at Pd=400W in Paired configurations	R⊕JC	0.32	-C /VV

Table 3. Electrical Characteristics (TA = 25℃ unless otherwise noted)

DC Characteristics (Each path, measured on wafer prior to packaging)

Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Drain-Source Breakdown Voltage	VGS=-8V; IDS=100mA	V _{DSS}		200		V
Gate Threshold Voltage	VDS =10V, ID = 100mA	$V_{GS(th)}$	-4	-	-2	V
Gate Quiescent Voltage	VDS =50V, IDS=200mA, Measured in Functional Test	$V_{GS(Q)}$		3.2		V


Ruggedness Characteristics in Paired configurations

Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Load mismatch capability	1.3GHz, Pout=1300W pulse CW					
	All phase, VSWR 5:1					
	No device damages					

TYPICAL CHARACTERISTICS

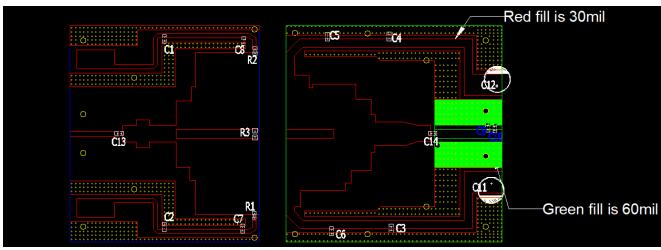
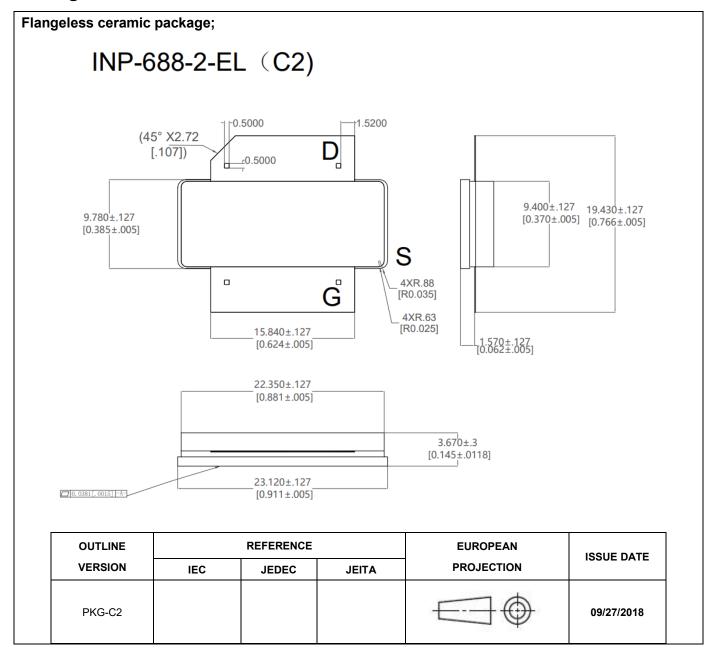

STCV13700RC2*2 at 1300MHz

Figure 1: Network analyzer output S11/S21 Vds=50V, Idq=600mA, Pin=0dBm

STCV13700RC2 LDMOS TRANSISTOR Document Number: STCV13700RC2 Preliminary Datasheet V1.0


Reference Circuit of Test Fixture

Component	Description	Suggestion		
C1~C4	10uF	10uF/100V		
C5~C8	68pF	MQ101111		
C13	39pF	MQ101111		
C14	39pF MCM-1-300V-D-390J			
C11,C12	4700uF/63V	Electrolytic Capacitor		
C9	2.2pF	MQ102525		
C10	0.5pF MQ101111			
R1,R2	100 Ω Chip Resistor			
R3	10	Chip Resistor		
DOD	(Red fill) 30mil Rogers4350			
PCB	(green fill) Taconic RF-35TC-0600-A,thickness 60 mils,1oz copper			

STCV13700RC2 LDMOS TRANSISTOR Document Number: STCV13700RC2

Package Outline

STCV13700RC2 LDMOS TRANSISTOR

Document Number: STCV13700RC2 Preliminary Datasheet V1.0

Revision history

Table 5. Document revision history

Date	Revision	Datasheet Status
2023/10/23	Rev 1.0	Preliminary datasheet

Application data based on TC-23-68

Disclaimers

Specifications are subject to change without notice. Innogration believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Innogration for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Innogration . Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Innogration in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility. For any concerns or questions related to terms or conditions, pls check with Innogration and authorized distributors

Copyright © by Innogration (Suzhou) Co.,Ltd.