

Document Number: ITEH22040C6 Preliminary Datasheet V1.3

40W,28V Plastic RF LDMOS Transistor

Description

The ITEH22040C6 is a 40-watt, highly rugged, LDMOS transistor, designed for any general applications at frequencies 0.7 to 2.2GHz, in 10*6mm QFN plastic package, supporting surface mounted on PCB through high density grounding vias.

It can be tuned to meet up to 36dBm WCDMA or LTE ACLR without DPD needed purely by back off operation.

•Typical 1.8GHz Class AB RF Performance (On Innogration fixture with device soldered).

VDS=28V, IDQ=335mA

Freq	Pout	CCDF	ACPR	Gain	Efficiency
(MHz)	(dBm)	(dB)	(dBc)	(dB)	(%)
1805	35	10. 37	-47.3	19. 16	14. 6
1840	35	10. 26	-47.2	19. 45	15.8
1880	35	10.03	-46.0	19. 58	16. 9

Typical 2.1GHz Class AB RF Performance (On Innogration fixture with device soldered).
VDS=28V, IDQ=280mA

Freq	Pout	CCDF	ACPR	Gain	Efficiency
(MHz)	(dBm)	(dB)	(dBc)	(dB)	(%)
2110	36	10.2	-49.33	17. 03	16. 44
2140	36	10.1	-50.47	16.85	17. 79
2170	36	10.0	-49.15	16.82	19. 19

Features

- High Efficiency and Linear Gain Operations
- Integrated ESD Protection
- Excellent thermal stability, low HCl drift
- Large Positive and Negative Gate/Source Voltage Range for Improved Class C Operation
- Pb-free, RoHS-compliant

Suitable Applications

- L, S band power ampliifer
- All 4G/5G cellular application within 0.7 to 2.2GHz

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
DrainSource Voltage	V _{DSS}	+65	Vdc
GateSource Voltage	V _{GS}	-10 to +10	Vdc
Operating Voltage	V _{DD}	+28	Vdc
Storage Temperature Range	Tstg	-65 to +150	°C
Case Operating Temperature	Tc	+150	°C
Operating Junction Temperature	T₃	+225	°C

Table 2. Thermal Characteristics

Characteristic	Symbol	Value	Unit
----------------	--------	-------	------

ITEH22040C6

Document Number: ITEH22040C6 Preliminary Datasheet V1.3

Thermal Resistance, Junction to Case	Rejc	0.5	°C/W
T _C = 85°C, T _J =200°C, DC test			

Table 3. ESD Protection Characteristics

Test Methodology	Class
Human Body Model (per JESD22A114)	Class 2

Table 4. Electrical Characteristics (TA = 25 $^{\circ}$ C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
DC Characteristics					
Drain-Source Voltage	V _{(BR)DSS}		65		V
V _{GS} =0, I _{DS} =100uA	V (BR)DSS		03		V
Zero Gate Voltage Drain Leakage Current				1	μΑ
$(V_{DS} = 28V, V_{GS} = 0 V)$	I _{DSS}			ı	μΑ
GateSource Leakage Current	I _{GSS}		<u></u>	1	μΑ
(V _{GS} = 11 V, V _{DS} = 0 V)	IGSS			'	μΑ
Gate Threshold Voltage	V _{GS} (th)		2		V
$(V_{DS} = 28V, I_D = 600 \mu A)$	V GS(U1)				V
Gate Quiescent Voltage	$V_{GS(Q)}$		2.7		V
(V _{DD} = 28V, I _D = 350mA, Measured in Functional Test)	▼ GS(Q)		2.1		•

Load Mismatch (In Innogration Test Fixture, 50 ohm system): $V_{DD} = 28 Vdc$, $I_{DQ} = 350 mA$, f = 2200 MHz

VSWR 10:1 at 20W pulse CW Output Power No Device Degradation

Figure 1:Pin Definition(Top View)

Pin No.	Symbol	Description
8,9,10,11,14,15,16,17	Vgs/RF In	Vgs and RF input
26,27,28,29,32,33,34,35	Vds/RF out	Vds and RF output
2,5,7,12,13,18,20,23,25,30,31,36	GND	DC/RF Ground
Others	NC	No connection
Package Base	GND	DC/RF Ground.

1.8GHz application board

Reference Circuit of Test Fixture Assembly Diagram 20mils RO4350B

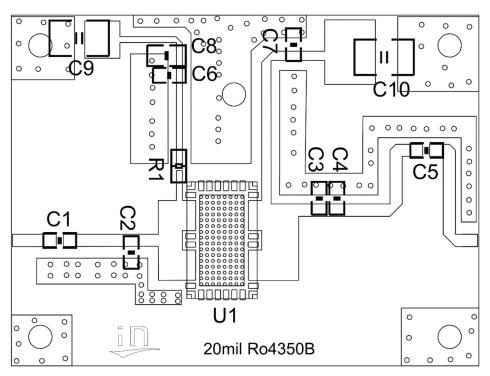


Figure 2. Test Circuit Component Layout

Table 5. Test Circuit Component Designations and Values

Reference	Footprint	Value	Quantity
C1	0603	3.3pF/250V	1
C2	0603	5.1pF/250V	1
C3	0603	4.3pF/250V	1
C4	0603	1.8pF/250V	1
C5, C6, C7	0603	20pF/250V	3
C8	0805	10uF/16V	1
C9, C10	1210	10uF/100V	2
R1	0603	10ohm	1
U1	C6	ITEH22040C6	1

TYPICAL CHARACTERISTICS

Figure 3. Power Gain and Drain Efficiency as function of Power Output

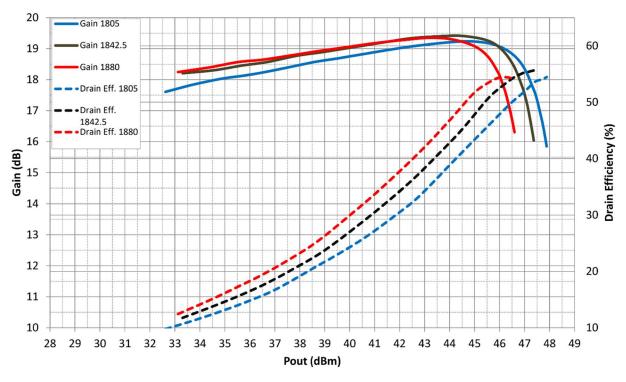
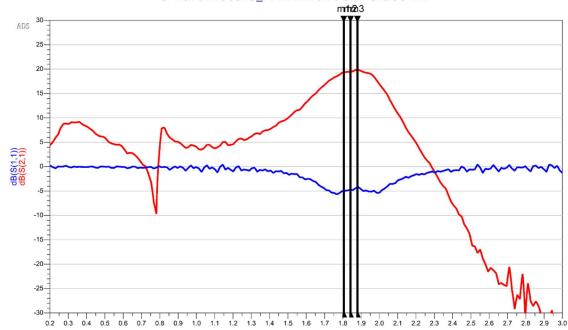



Figure 4.Network analyzer output S11/S21

m1	m2	m3
freq=1.805 GHz	freq=1.842 GHz	freq=1.880 GHz
dB(S(2,1))=19.340	dB(S(2,1))=19.465	dB(S(2,1))=19.853
dB(S(2,1))=19.340 dB(S(1,1))=-4.987	dB(S(1,1))=-4.749	dB(S(1,1))=-4.212

S-Parameters_ITEH22040C6 Class AB

2.1GHz application board

Reference Circuit of Test Fixture Assembly Diagram 20mils RO4350B

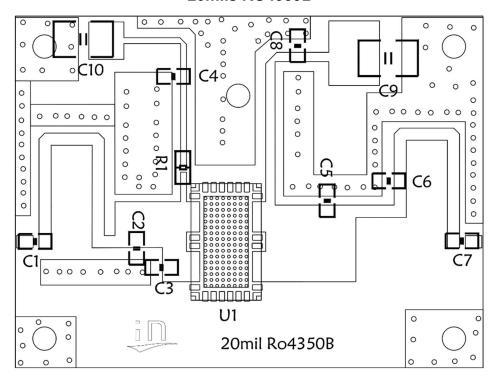


Figure 2. Test Circuit Component Layout

Table 5. Test Circuit Component Designations and Values

Reference	Footprint	Value	Quantity	
C1, C4, C7, C8	0603	20pF/250V	4	
C2	0603	3.0pF/250V	1	
C3	0603	3.6pF/250V	1	
C5	0603	4.7pF/250V	1	
C6	0603	1.2pF/250V	1	
C9, C10	1210	10uF/100V	2	
R1	0603	10ohm	1	
U1	C6	ITEH22040C6	1	

TYPICAL CHARACTERISTICS

Figure 5. Power Gain and Drain Efficiency as function of Power Output

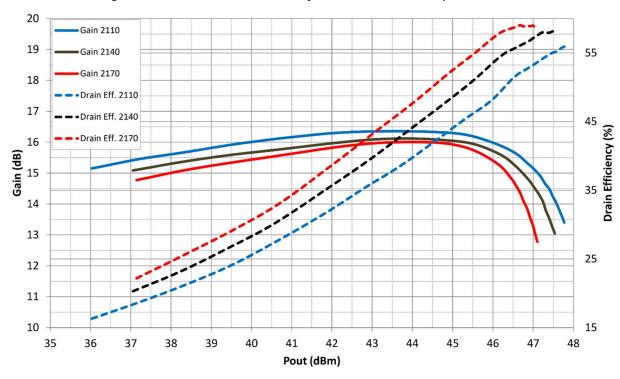
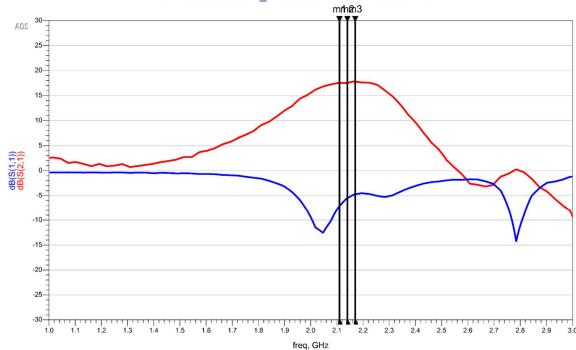
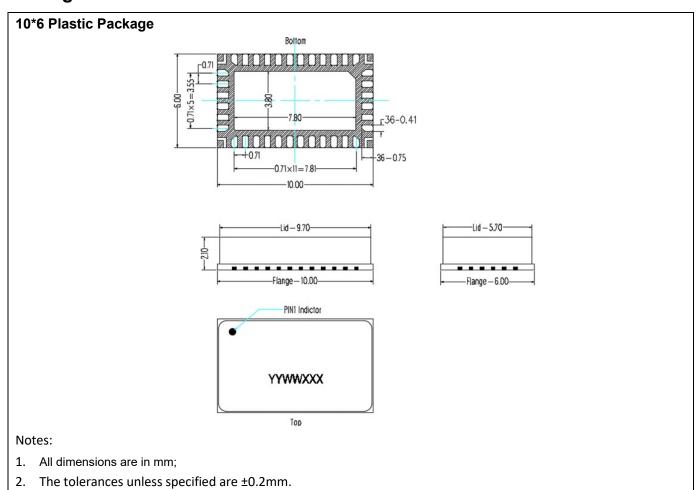



Figure 6.Network analyzer output S11/S21


m1	m2	m3
		freq=2.170 GHz dB(S(2,1))=17.792
dB(S(1,1))=-7.101	dB(S(2,1))=17.541 dB(S(1,1))=-5.521	dB(S(1,1))=-4.736

S-Parameters_ITEH22040C6 Class AB

Document Number: ITEH22040C6 Preliminary Datasheet V1.3

Package Dimensions

Revision history

Table 7. Document revision history

Date	Revision	Datasheet Status
2022/11/11	Rev 1.0	Preliminary Datasheet
2022/12/9	Rev 1.1	Update on Pin Definition
2023/4/3	Rev 1.2	Update on 1.8GHz/2.1GHz application layout
2023/4/28	Rev 1.3	Update 2.1GHz application data up to 36dBm

Application data based on ZXY-22-38&39/ZBB-23-11/12/17

Disclaimers

Specifications are subject to change without notice. Innogration believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Innogration for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Innogration . Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Innogration in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility. For any concerns or questions related to terms or conditions, pls check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.