
650W, 0.5GHz 50V High Power RF LDMOS FETs

Description

The MC1065RVS is a 650watt capable, high performance, unmatched single ended and earless LDMOS FET, used for any frequency up to 0.5GHz,capable of delivery either CW or pulsed signal.

It is featured with high breakdown voltage and stability, and leading RF performance.

Typical performance(on 325MHz narrow band application board with devices soldered)

V_{DS}=50V,I_{DQ}=50mA, CW

Freq(MHz)	Pin(dBm)	Pout(dBm)	Pout(W)	IDS(A)	Gain(dB)	Eff(%)
	38.7	57.38	547.0	15.64	18.68	70.0
325	39.63	57.75	595.7	16.6	18.12	71.8
323	40.6	58	631.0	17.32	17.4	72.9
	41.46	58.2	660.7	17.94	16.74	73.7

Features

- High Efficiency and Linear Gain Operations
- Integrated ESD Protection
- Excellent thermal stability, low HCI drift
- Large Positive and Negative Gate/Source Voltage Range for Improved Class C Operation
- Pb-free, RoHS-compliant

Suitable Applications

- Laser Exciter
- Synchrotron
- MRI
- Plasma generator
- Weather Radar

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
DrainSource Voltage	V _{DSS}	115	Vdc
GateSource Voltage	V _{GS}	-10 to +10	Vdc
Operating Voltage	$V_{ exttt{DD}}$	+55	Vdc
Storage Temperature Range	Tstg	-65 to +150	°C
Case Operating Temperature	Tc	+150	°C
Operating Junction Temperature	TJ	+225	°C

Table 2. Thermal Characteristics

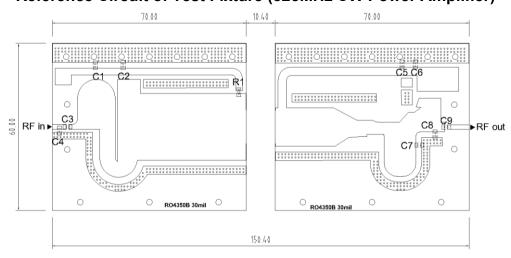
Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction to Case ,Case Temperature 85°C, 800W CW,	Rth	0.24	0000
50 Vdc, IDQ = 240 mA			°C/W

Table 3. ESD Protection Characteristics

Test Methodology	Class
Human Body Model (per JESD22A114)	Class 2

Document Number: MC1065RVS Preliminary Datasheet V1.1

Table 4. Electrical Characteristics ($T_A = 25$ °C unless otherwise noted)


Characteristic	Symbol	Min	Тур	Max	Unit
DC Characteristics					
Drain-Source Voltage			115		V
V_{GS} =0V, I_{DS} =1.0mA	V _{(BR)DSS}				
Zero Gate Voltage Drain Leakage Current				1	μА
$(V_{DS} = 50V, V_{GS} = 0 V)$	I _{DSS}				
Gate—Source Leakage Current				1	μА
$(V_{GS} = 10 \text{ V}, V_{DS} = 0 \text{ V})$	I_{GSS}				
Gate Threshold Voltage	V _{GS} (th)		2.54		V
$(V_{DS} = 50V, I_D = 600 \mu A)$	V GS(UII)		2.54		V
Gate Quiescent Voltage	$V_{GS(Q)}$		3.14		V
$(V_{DD}$ = 50 V, I_D = 50 mA, Measured in Functional Test)	V GS(Q)				
Drain source on state resistance	Rds(on)		36		mΩ
(V_{DS} = 0.1V, V_{GS} = 10 V) Each section side of device measured	Nus(on)		30		11152
Common Source Input Capacitance	C _{ISS}		330		pF
(V $_{GS}$ = 0V, V $_{DS}$ =50 V, f = 1 MHz) Each section side of device					
measured					
Common Source Output Capacitance	Coss		125		pF
(V $_{GS}$ = 0V, V $_{DS}$ =50 V, f = 1 MHz) Each section side of device					
measured					
Common Source Feedback Capacitance	C _{RSS}		3.6		pF
(V $_{GS}$ = 0V, V $_{DS}$ =50 V, f = 1 MHz) Each section side of device					
measured					

Load Mismatch (In Innogration Test Fixture, 50 ohm system): $V_{DD} = 50 \text{ Vdc}$, $I_{DQ} = 50 \text{ mA}$, f = 325 MHz, pulse width:100us, duty cvcle:10%

10:1 at 650W Pulsed CW Output Power

No Device Degradation

Reference Circuit of Test Fixture (325MHz CW Power Amplifier)

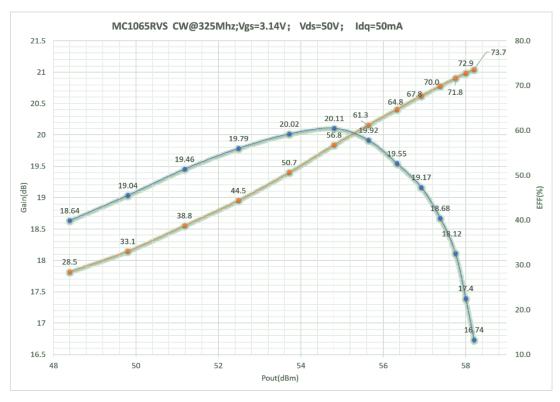
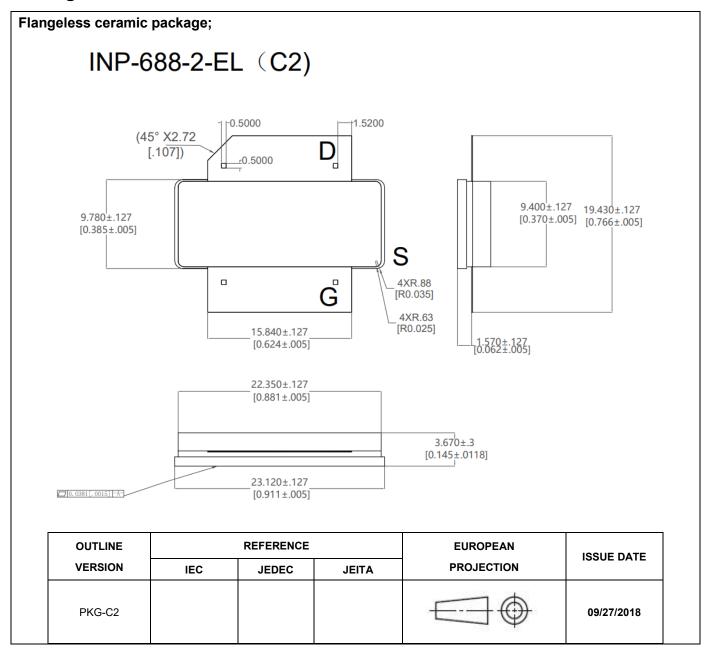


Table 5. Test Circuit Component Designations and Values


Component	Description	Suggested Manufacturer		
C2、C3、C5	150pF	ATC800B		
C9	100pF*3	ATC800B		
C1、C6	Ceramic multilayer capacitor, 10uF	Ceramic multilayer capacitor, 10uF		
C4	30pF	ATC800B		
C7	3.3pF	ATC800B		
C8	30pF	ATC700C		
R1	Chip Resistor,9.1Ω,1206	Chip Resistor,9.1Ω,1206		
РСВ	30mil thickness,Ro4350B	30mil thickness,Ro4350B		

TYPICAL CHARACTERISTICS

Figure 1: Pulsed CW Gain and Power Efficiency as a Function of Pout @100MHz at 50V

Package Outline

Revision history

Table 5. Document revision history

Date	Revision	Datasheet Status
2021/10/11	Rev 1.0	Preliminary datasheet
2023/5/14	Rev 1.1	Modify C9 as 3 pcs capacitors in parallel for power handling

Application data based on JF-21-15

Disclaimers

Specifications are subject to change without notice. Innogration believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Innogration for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Innogration . Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Innogration in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility. For any concerns or questions related to terms or conditions, pls check with Innogration and authorized distributors

Copyright © by Innogration (Suzhou) Co.,Ltd.