Document Number: MG3503S Product Datasheet V1.1

40W, 2.5-3.5GHz 28V RF LDMOS FETs

Description

The MG3503S is a 40-watt, internally matched, single ended LDMOS FETs, designed for multiple applications within full band 2.5-3.5GHz.

It can be used in Class AB/B and Class C for all typical modulation formats, for CW and pulsed, linear or saturated applications.

MG3503S

• Typical Performance (On Innogration 2.5-3.5GHz fixture with device soldered):

Voltage	Signal	Pin(dBm)	Pout(W)	Gain(dB)	Eff(%)
28	Pulse CW	37.5	49.5-54	9.5-9.9	38-52
28	cw	37.5	48-50	9-9.5	36-52
32	Pulse CW	37.5	60-66	10-10.8	36-52
32	CW	37.5	50-60	9.5-10.3	35-50

Features

- High Efficiency and Linear Gain Operations
- Integrated ESD Protection
- Excellent thermal stability, low HCI drift
- Large Positive and Negative Gate/Source Voltage Range for Improved Class C Operation
- Pb-free, RoHS-compliant

Suitable Applications

- S band amplifier
- · ISM applications
- · Cellular amplifier

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
DrainSource Voltage	V _{DSS}	+65	Vdc
GateSource Voltage	V_{GS}	-10 to +10	Vdc
Operating Voltage	V_{DD}	+32	Vdc
Storage Temperature Range	Tstg	-65 to +150	°C
Case Operating Temperature	Tc	+150	°C
Operating Junction Temperature	T₃	+225	°C

Table 2. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction to Case	Dolo	4.2	°C/M
T _C = 85°C, DC test	Rejc	1.3	°C/W

Table 3. ESD Protection Characteristics

Test Methodology	Class
Human Body Model (per JESD22A114)	Class 2

Table 4. Electrical Characteristics (TA = 25 °C unless otherwise noted)

Document Number: MG3503S Product Datasheet V1.1

Characteristic	Symbol	Min	Тур	Max	Unit
OC Characteristics					
Zero Gate Voltage Drain Leakage Current	I _{DSS}			100	^
$(V_{DS} = 65V, V_{GS} = 0 V)$					μΑ
Zero Gate Voltage Drain Leakage Current	,			1	^
$(V_{DS} = 28 \text{ V}, V_{GS} = 0 \text{ V})$	DSS				μΑ
GateSource Leakage Current	,			1	^
$(V_{GS} = 10 \text{ V}, V_{DS} = 0 \text{ V})$	I _{GSS}			l	μΑ
Gate Threshold Voltage	V _{GS} (th)		2.0		V
$(V_{DS} = 28V, I_D = 450 \mu A)$	V GS(U1)		2.0		V
Gate Quiescent Voltage			2.4		V
$(V_{DD} = 28 \text{ V}, I_D = 50 \text{mA}, \text{Measured in Functional Test})$	$V_{GS(Q)}$	2.4			V
Functional Tests (On Demo Test Fixture, 50 ohm system) $V_{DD} = 28 \text{ Vdc}$	$I_{DQ} = 50 \text{ mA},$	f = 2500 -3500	MHz, Pulse C	W Signal .	
Power Gain	Gp	9.5			dB
Drain Efficiency@P3dB	η _D		40		%
3 dB Compression Point	P _{-3dB}	40			W
Load Mismatch (In Innogration Test Fixture, 50 ohm system): $V_{DD} =$	28 Vdc, I _{DQ} = \$	50 mA, f = 250	0 MHz		
VSWR 5:1 at 40W pulse CW Output Power	OW pulse CW Output Power No Device Degradation				

2.5-3.5GHz

TYPICAL CHARACTERISTICS

Figure 2. Network analyzer output S11/S21 (VDS=28V IDQ=200mA VGS=2.95V)

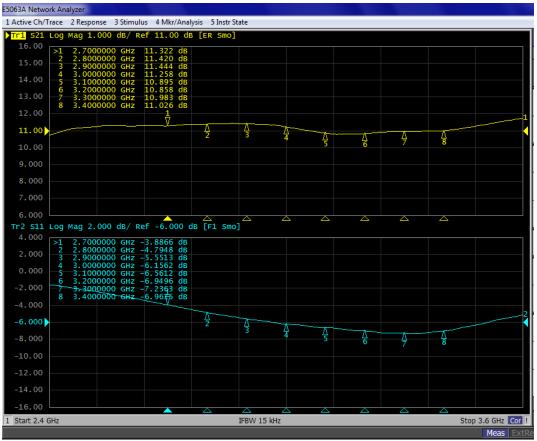
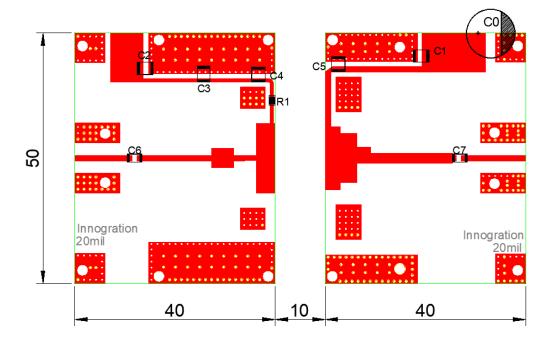



Figure 3. Test Circuit Component Layout

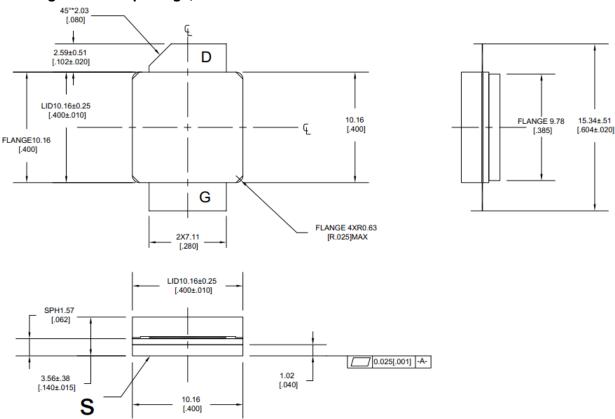

Document Number: MG3503S Product Datasheet V1.1

Table 5. Test Circuit Component Designations and Values

Component	Description	Suggestion
CO	1000uF/63V	Electrolytic Capacitor
C1, C2	10uF	1210
C3, C4, C5, C6	10pF	MQ301111
R1	Chip Resistor,10Ω	0805
PCB	Rogers 4350B, thickness 20 mils, 1oz copper	

Package Outline

Earless flanged ceramic package; 2 leads

Unit: mm [inch]

Tolerance .xx +/- 0.01 .xxx +/- 0.005 inches

Revision history

Table 5. Document revision history

Date	Revision	Datasheet Status
2023/5/24	Rev 1.0	Product Datasheet
2024/11/23	Rev 1.1	Application data update with more info and some typo corrected

Application data based on RXT-23-18

Disclaimers

Specifications are subject to change without notice. Innogration believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Innogration for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Innogration . Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Innogration in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility. For any concerns or questions related to terms or conditions, pls check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.