Gallium Nitride 50V, 400W, RF Power Transistor

Description

The SX3040RVP is a 400-watt, unmatched GaN HEMT in form of push-pull configuration, designed for general purposes and wide band amplifier applications with frequencies from HF to 2GHz.

There is no quarantee of performance when this part is used in applications designed outside

There is no guarantee of performance when this part is used in applications designed outside of these frequencies.

• Typical Performance (On Innogration broadband application board):

 $I_{DQ} = 150 \text{ mA}, CW$

Freq(MHz)	Drain Voltage(V)	Psat(W)	Gain(dB)	Eff(%)
225-512	50	360-400	>19	68~76
500-800	50	380-420	>18	68~75

Applications and Features

- Suitable for wireless communication infrastructure, wideband amplifier, EMC testing, ISM etc.
- High Efficiency and Linear Gain Operations
- Thermally Enhanced Industry Standard Package
- High Reliability Metallization Process
- · Excellent thermal Stability and Excellent Ruggedness
- Compliant to Restriction of Hazardous Substances (RoHS) Directive 2002/95/EC

Important Note: Proper Biasing Sequence for GaN HEMT Transistors

Turning the device ON

- 1. Set VGS to the pinch--off (VP) voltage, typically -5 V
- 2. Turn on VDS to nominal supply voltage (50V)
- 3. Increase VGS until IDS current is attained
- 4. Apply RF input power to desired level

Turning the device OFF

- 1. Turn RF power off
- 2. Reduce VGS down to VP, typically -5 V
- 3. Reduce VDS down to 0 V
- 4. Turn off VGS

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
DrainSource Voltage	V _{DSS}	+200	Vdc
GateSource Voltage	V_{GS}	-8 to 0	Vdc
Operating Voltage	V_{DD}	0 to 55	Vdc
Maximum forward gate current	Igf	50	mA
Storage Temperature Range	Tstg	-65 to +150	С
Case Operating Temperature	T _C	-55 to +150	С
Operating Junction Temperature	TJ	+225	С

Table 2. Thermal Characteristics

Characteristic	Symbol	Value	Unit	
Thermal Resistance, Junction to Case	Pala	0.7	Char	
T _C = 85°C, T _J =200°C, DC Power Dissipation, FEA	Rejc	0.7	C/W	

Table 3. Electrical Characteristics (T_C = 25 °C unless otherwise noted)

DC Characteristics

Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Drain-Source Breakdown Voltage	V _{GS} =-8V; I _{DS} =50mA	V _{DSS}		200		V
Gate Threshold Voltage	V _{DS} = 10V, I _D = 50mA	V _{GS} (th)	-4	-	-3	V

Document Number: SX3040RVP Preliminary Datasheet V1.2

Gate Quiescent Voltage $V_{DS} = 50V$, $I_{DS} = 200$ mA, $V_{GS(Q)}$ $V_{GS(Q)}$ $V_{GS(Q)}$

225-512MHz

Figure 2. Network analyzer output S11/S21 VDS=50V IDQ=300mA

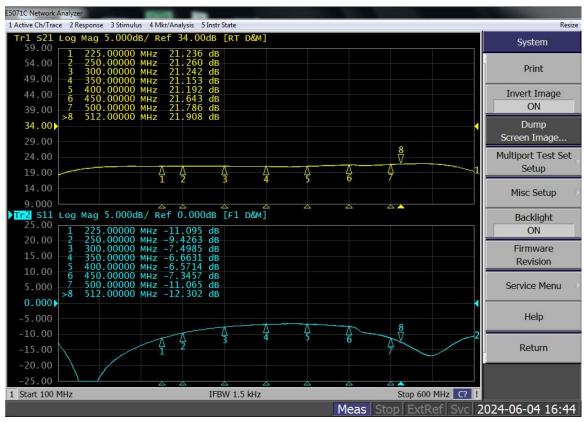
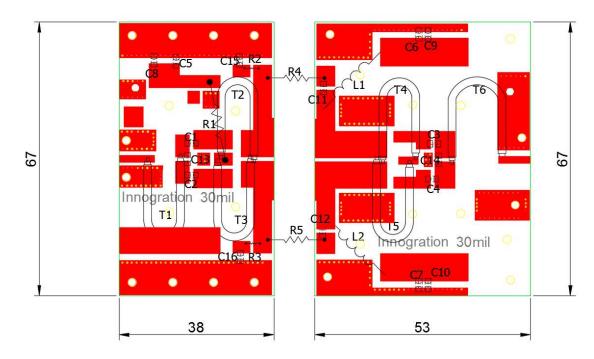



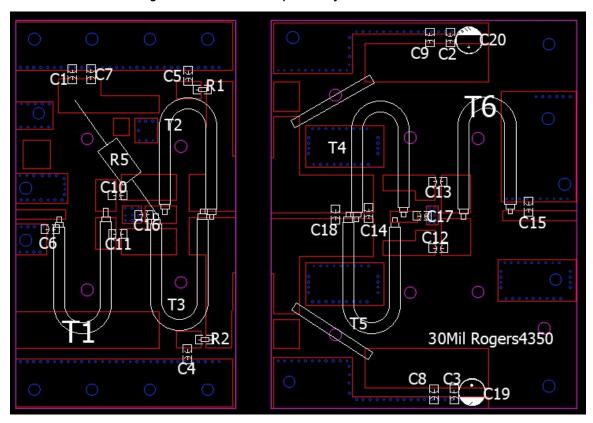
Figure 3. Test Circuit Component Layout

Table 4. Test Circuit Component Designations and Values

Component	Description	Suggestion	
C1~C7	200pF	MQ301111	
C8~C10	10uF/100V	Ceramic Multilayer Capacitor	
C11,C12,C15,C16	1000pF	MQ301111	
C13	5.1pF	MQ301111	
C14	2pF	MQ301111	
R1	470 Ω	plug-in resistor	
R2,R3	10 Ω 1812	Chip Resistor	
R4,R5	470 Ω	plug-in resistor	
T1,T6	50ohm 60mm	RFSFBU-086-50	
T2,T3	16.7ohm 60mm	SFF-16.7-1.5	
T4,T5	25ohm 60mm	SFF-25-1.5	
L1,L2	d=1.5mm,D=3mm,2 turns	DIY	
PCB	30Mil Rogers4350		

500-800MHz

Figure 4. Network analyzer output S11/S21 VDS=50V IDQ=300mA

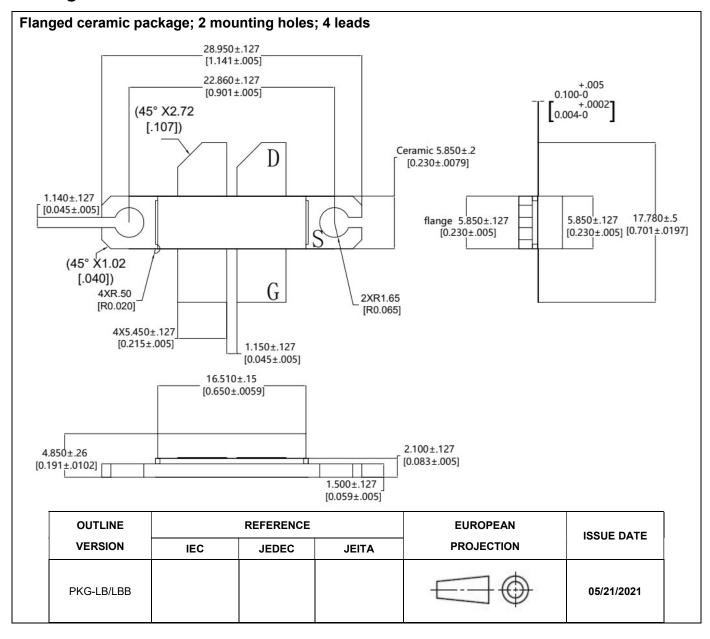

Figure 5. Test Circuit Component Layout

Table 5. Test Circuit Component Designations and Values

Component	Description	Suggestion
C1~C5	10uF	10uF/100V
C6~C9	910pF	MQ101111
C10,C11	39pF	MQ101111
C12,C13	150pf	MQ101111
C14	3pF	MQ101111
C15	0.5pF	MQ101111
C16,C17	560pF	MQ101111
C18	2.4pF	MQ101111
C19,C20	4700uF/50V	Electrolytic Capacitor
R1,R2	10 Ω	Chip Resistor
T1	50 ohm,60mm	RFSFBU-086
T2,T3	16.7 ohm,60mm	SFF-16.7-1.5
T4,T5	25 ohm,60mm	SFF-25-1.5
T6	50 ohm, 50mm	RFSFBU-086
PCB	30Mil	Rogers4350

Package Outline

Document Number: SX3040RVP Preliminary Datasheet V1.2

Revision history

Table 4. Document revision history

Date	Revision	Datasheet Status	
2022/8/5	Rev 1.0	Preliminary Datasheet (NX/SX shared)	
2023/5/5	Rev 1.1	Modify the upper limits of frequency to 2GHz	
2024/6/4	Rev 1.2	Modify the application with latest result	

Application data based on HL-22-32/24-20, TC-24-35

Disclaimers

Specifications are subject to change without notice. Innogration believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Innogration for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Innogration . Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Innogration in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility. For any concerns or questions related to terms or conditions, pls check with Innogration and authorized distributors

Copyright © by Innogration (Suzhou) Co.,Ltd.