

2.4-2.5GHz, 50W*2, Dual path, High Power RF LDMOS FETs

Description

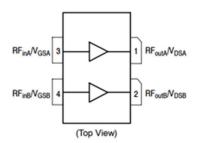
The ITCH25100B4 is a dual path 100W, internally matched LDMOS FETs, designed for multiple use especially RF Energy application including cooking, heating and medical with frequencies from 2400 to 2500MHz.

Each path is 50W capable independently and qualified up to 32V operation.

•Typical CW Performance of each path A or B (on Innogration fixture with device soldered):

Freq	P1dB	P1dB	P1dB	P1dB	P3dB	P3dB	P3dB
(MHz)	(dBm)	(W)	Eff(%)	Gain(dB)	(dBm)	(W)	Eff(%)
2400	47.77	59.85	58.50	16.52	48.17	65.58	59.56
2450	47.49	56.17	59.28	16.33	47.89	61.49	60.31
2500	46.85	48.43	58.32	16.72	47.45	55.64	59.54

• Typical CW Performance path A+B (on Innogration fixture with device soldered):


Freq	P1dB	P1dB	P1dB	P1dB	P3dB	P3dB	P3dB
(MHz)	(dBm)	(W)	Eff(%)	Gain(dB)	(dBm)	(W)	Eff(%)
2400	51.15	130.39	56.59	16.29	51.63	145.62	57.83
2450	50.79	120	58.04	16.72	51.2	131.78	57.52
2500	49.93	98.37	57.06	17.98	50.57	114.01	56.7

Features

- High Efficiency and Linear Gain Operations
- Integrated ESD Protection
- Internally Matched for Ease of Use
- Large Positive and Negative Gate/Source Voltage Range for Improved Class C Operation
- · Excellent thermal stability, low HCI drift
- Compliant to Restriction of Hazardous Substances (RoHS) Directive 2002/95/EC

Figure 1: Pin Connection definition

Transparent top view (Backside grounding for source)

Document Number: ITCH25100B4 Preliminary Datasheet V1.1

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
DrainSource Voltage	V _{DSS}	65	Vdc
GateSource Voltage	V _{GS}	-10 to +10	Vdc
Operating Voltage	V _{DD}	+32	Vdc
Storage Temperature Range	Tstg	-65 to +150	°C
Case Operating Temperature	Tc	+150	°C
Operating Junction Temperature	T₃	+225	°C

Table 2. Thermal Characteristics

Characteristic	Symbol	Value	Unit	
Thermal Resistance, Junction to Case	Rеjc	0.45	°C/M	
Tcase= 85°C, Tj= 200°C, DC Power supply	KejC	0.45	°C/W	

Table 3. ESD Protection Characteristics

Test Methodology	Class
Human Body Model (per JESD22A114)	Class 2

Table 4. Electrical Characteristics (TA = 25 C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
DC Characteristics					
Drain-Source Breakdown Voltage	Voss	65			V
(V _{GS} =0V; I _D =100uA)	V DSS	00			V
Zero Gate Voltage Drain Leakage Current				10	μΑ
(V _{DS} = 28 V, V _{GS} = 0 V)	I _{DSS}			10	μΑ
GateSource Leakage Current	I _{GSS}			1	μΑ
$(V_{GS} = 6 \text{ V}, V_{DS} = 0 \text{ V})$				· ·	μΛ
Gate Threshold Voltage	V _{GS} (th)		1.75		V
$(V_{DS} = 28V, I_D = 600 \text{ uA})$	V GS(III)		1.75		V
Gate Quiescent Voltage	$V_{GS(Q)}$		2.4		V
$(V_{DD} = 28V, I_{DQ} = 200 \text{ mA}, Measured in Functional Test)$	▼ GS(Q)		2.4		V

Load Mismatch (In Innogration Test Fixture, 50 ohm system) V_{DD} = 28 Vdc, I_{DQ} =50 mA, f = 2450MHz

/SWR 10:1 at 100W pulse CW Output Power	No Device Degradation
---	-----------------------

50W (Path A or B)

Figure 1 Efficiency and power gain as function of Pout of each path A or B

Signal: Pulse width 100us, duty cycle 10%, Vgs= 2.24V,Vdd= 28V,Idq=5mA

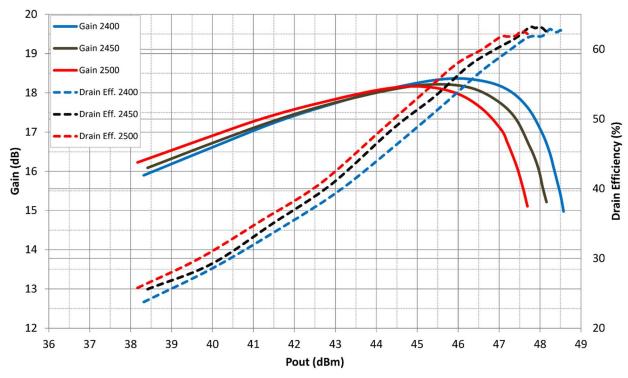


Figure 3: Network analyzer output, S11 and S21

 $\begin{bmatrix} m1 \\ freq=2.400 \text{ GHz} \\ dB(S(2,1))=18.240 \\ dB(S(1,1))=-17.512 \end{bmatrix} \begin{bmatrix} m2 \\ freq=2.450 \text{ GHz} \\ dB(S(2,1))=18.525 \\ dB(S(1,1))=-13.594 \end{bmatrix} \begin{bmatrix} m3 \\ freq=2.500 \text{ GHz} \\ dB(S(2,1))=18.826 \\ dB(S(1,1))=-10.405 \end{bmatrix}$

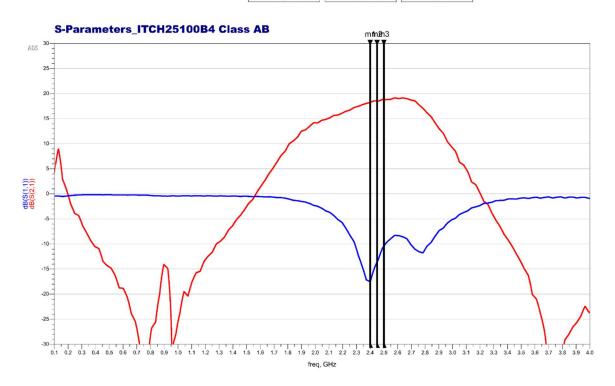
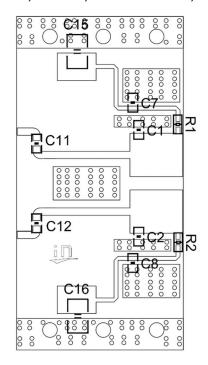



Figure 4: Layout picture (original Gerber file upon request)

Board material: Ro 4350B, Er = 3.48, thickness 20 mils, 1oz copper, unit mm,

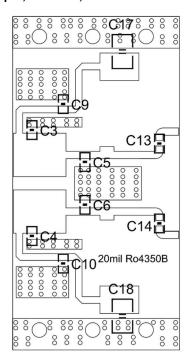


Table 5. List of components

Reference	Footprint	Value	Quantity
C7, C8, C9, C10, C11,	0805	12pF/250V	8
C12, C13, C14	0803	12μγ/2300	0
C1, C2	0805	1.2pF/250V	2
C3, C4	0805	2.4pF/250V	2
C5, C6	0805	1.0pF/250V	2
C15, C16, C17, C18,	1210	10uF/100V	4
R1, R2	0603	10R	2
/	B4	ITCH25100B4	1

100W (Path A + B)

Figure 5Efficiency and power gain as function of Pout

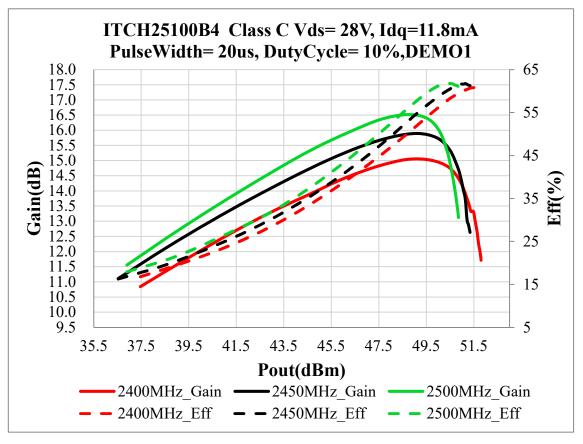


Figure 6: Network analyzer output, S11 and S21

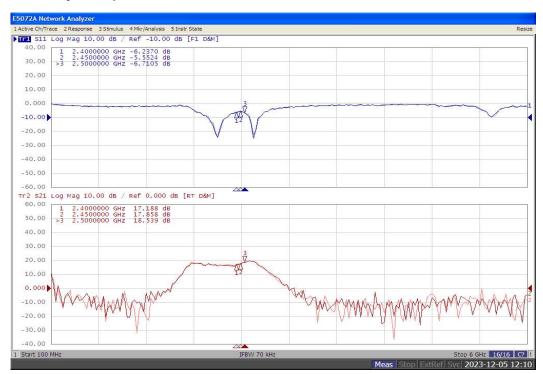


Figure 4: Layout picture (original Gerber file upon request)

Board material: Ro 4350B, Er = 3.48, thickness 20 mils, 1oz copper, unit mm,

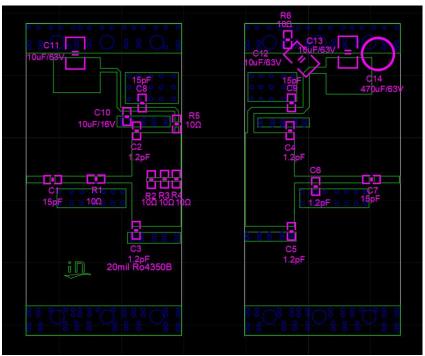
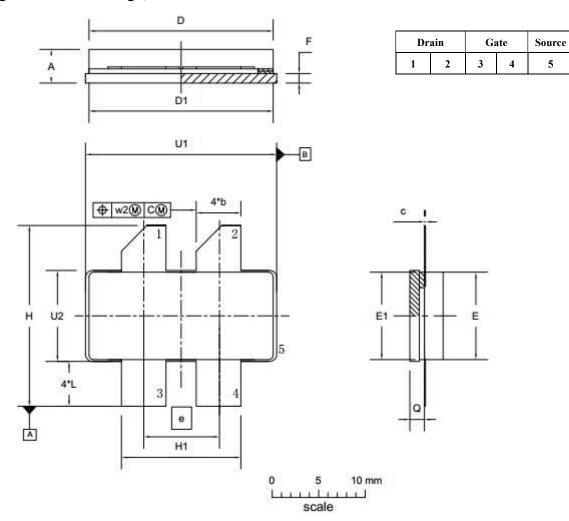


Table 6. List of components

Component	Value	Quantity
U1	ITCH25100B4	1
C1、 C7、C8、C9	15pF	4
C2、C3、C4、C5、C6	1.2pF	5
C10	10uF/16V	1
C11、C12、C13	10uF/63V	3
R1、R2、R3、R4、R5、R6	10Ω	6
C14	470uF/63V	1


5

Innogration (Suzhou) Co., Ltd.

Package Outline

Earless Flanged Ceramic Package; 4 leads

UNIT	A	b	С	D	D ₁	е	E	E ₁	F	Н	H1	L	Q	U ₁	U ₂	W ₁	W ₂
mm	4.72	4.67	0.15	20.02	19.96	7.90	9.50	9.53	1.14	19.94	12.98	5.33	1.70	20.70	9.91	0.25	0.51
mm	3.43	4.93	0.08	19.61	19.66	7.90	9.30	9.25	0.89	18.92	12.73	4.32	1.45	20.45	9.65	0.25	0.51
inahaa	0.186	0.194	0.006	0.788	0.786	0.244	0.374	0.375	0.045	0.785	0.511	0.210	0.067	0.815	0.390	0.01	0.00
inches	0.135	0.184	0.003	0.772	0.774	0.311	0.366	0.364	0.035	0.745	0.501	0.170	0.057	0.805	0.380	0.01	0.02

OUTLINE		REFERENCE		EUROPEAN	ISSUE DATE
VERSION	IEC	JEDEC	JEITA	PROJECTION	IOOOL DATE
PKG-B4					03/12/2013

Document Number: ITCH25100B4 Preliminary Datasheet V1.1

Revision history

Table 5. Document revision history

Date	Revision	Datasheet Status
2023/8/10	V1	Preliminary Datasheet Creation
2023/12/5	V1.1	Add 100W data

Application data based on ZBB-23-23/ZYX-23-12

Disclaimers

Specifications are subject to change without notice. Innogration believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Innogration for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Innogration . Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Innogration in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility. For any concerns or questions related to terms or conditions, pls check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.