
Gallium Nitride 50V 450W, RF Power Transistor

Description

The S3U1045V is a 450W single ended GaN HEMT, designed for multiple applications with frequencies up to 1.0GHz. It offers much smaller and simpler matching circuit than traditional push-pull matching circuit, as key benefit to customers.

It is recommended to use this part for pulsed CW application only.

There is no guarantee of performance when this part is used in applications designed Outside of these frequencies.

•Typical performance (on Innogration narrow band production fixture with device soldered)

	S3U1045V, Vds=50V, Idq=130mA ,Vgs=-3.22V 100us/10%					
F(MHz)	Pin (dBm)	Psat (dBm)	Psat (W)	I(A)	Gain (dB)	Eff(%)
425	34	57.31	538.27	1.53	23.3	70.4
435	34	57.22	527.23	1.49	23.2	70.8
445	33.7	57.16	520.00	1.42	23.5	73.2
455	32.2	57.00	501.19	1.34	24.8	74.8
465	32.6	56.52	448.75	1.22	23.9	73.6
475	32.7	56.16	413.05	1.11	23.5	74.4

Applications and Features

- Suitable for wireless communication infrastructure, wideband amplifier, EMC testing, ISM etc.
- High Efficiency and Linear Gain Operations
- Thermally Enhanced Industry Standard Package
- · High Reliability Metallization Process
- · Excellent thermal Stability and Excellent Ruggedness
- Compliant to Restriction of Hazardous Substances (RoHS) Directive 2002/95/EC

Important Note: Proper Biasing Sequence for GaN HEMT Transistors

Turning the device ON

- 1. Set VGS to the pinch--off (VP) voltage, typically –5 V
- 2. Turn on VDS to nominal supply voltage (50V)
- 3. Increase VGS until IDS current is attained
- 4. Apply RF input power to desired level

Turning the device OFF

- 1. Turn RF power off
- 2. Reduce VGS down to VP, typically -5 V
- 3. Reduce VDS down to 0 V
- 4. Turn off VGS

Table 1. Maximum Ratings

_			
Rating	Symbol	Value	Unit
DrainSource Voltage	V_{DSS}	+150	Vdc
GateSource Voltage	V _{GS}	-8 to 0	Vdc
Operating Voltage	V _{DD}	0 to 55	Vdc
Maximum forward gate current	Igf	54	mA
Storage Temperature Range	Tstg	-65 to +150	С
Case Operating Temperature	T _C	-55 to +150	С
Operating Junction Temperature	Tı	+225	С

Table 2. Thermal Characteristics

Characteristic	Symbol	Value	Unit

Document Number: S3U1045V Preliminary Datasheet V1.1

Thermal Resistance, Junction to Case	Rejc	0.7	C/W
T _C = 85°C, DC Power Dissipation, FEA	11000	0.7	C/ W

Table 3. Electrical Characteristics (T_C = 25 °C unless otherwise noted)

DC Characteristics

Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Drain-Source Breakdown Voltage	akdown Voltage V _{GS} =-8V; I _{DS} =54mA			150		V
Gate Threshold Voltage	V _{DS} = 50V, I _D = 54mA	V _{GS} (th)		-3.4		V
Gate Quiescent Voltage V _{DS} =50V, I _{DS} =100mA, Measured in Functional Test		V _{GS(Q)}		-3.2		V

Reference Circuit of Test Fixture Assembly Diagram

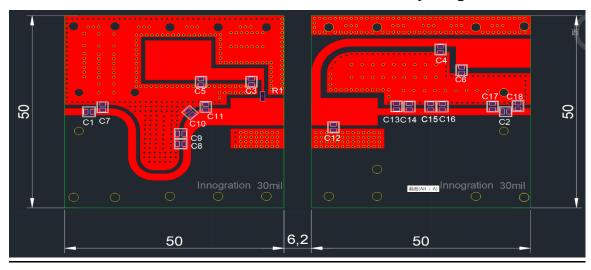


Figure 1. Test Circuit Component Layout (425-475MHz) RO4350B 30mils

Table 4. Test Circuit Component Designations and Values

Component	Description	Suggestion
C5,C6	10uF 1210	/
R1	51 Ώ 0805	/
C1,C2	82pF MQ301111	BJYL
C3,C4	1000pF MQ301111	ВЈҮ
C7	1.8pF MQ301111	BJYL
C8,C9,C14	10pF MQ301111	BJYL
C10	22pF MQ301111	BJYL
C11,C13	15pF MQ301111	BJYL
C12	2.2pF MQ301111	BJYL
C15	3.6pF MQ301111	BJYL
C16,C18	3.0pF MQ301111	BJYL
C17	4.3pF MQ301111	BJYL
L1	01mm wire ,5mm inner diameter, 5Turns	DIY

Figure 2. Network Analyzer result S11 and S21 Vgs = -3.1V, VDS= 50V, IDQ = 400mA

Package Outline

Flanged ceramic package; 2 leads

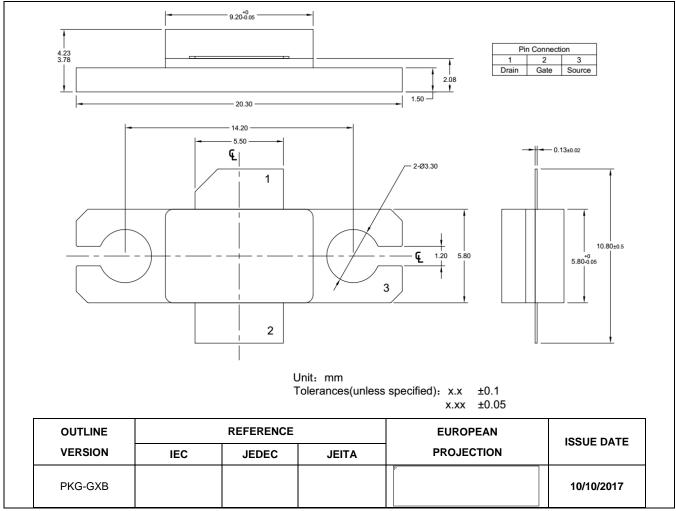


Figure 1. Package Outline PKG-G2E

Document Number: S3U1045V Preliminary Datasheet V1.1

Revision history

Table 4. Document revision history

Date	Revision	Datasheet Status
2023/9/7	V1.0	Preliminary Datasheet
2024/10/28	V1.1	Change application to 425-475MHz

Application data based on SYX-23-43/24-38

Notice

Specifications are subject to change without notice. Innogration believes the information within the data sheet to be reliable. Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose.

"Typical" parameter is the average values expected by Innogration in quantities and are provided for information purposes only. It can and do vary in different applications and related performance can vary over time. All parameters should be validated by customer's technical experts for each application.

Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility.

For any concerns or questions related to terms or conditions, please check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.