MV0520X

# **MV0520X LDMOS TRANSISTOR**

# 200W, HF-200MHz 28V High Power RF LDMOS

## **Description**

The MV0520X is a 200W single ended 28V LDMOS, highly rugged, unmatched for any applications within HF-200MHz

It supports CW, and pulsed and any modulated signal at either saturated or linear application.

It is also intended to be the drop-in replacement of legacy VDMOS such as D1017UK etc in the same mechanical outline while with improved performance

•Typical Performance (On Innogration fixture with device soldered):

 $V_{DD} = 28 \text{ Volts}$ ,  $I_{DQ} = 150 \text{ mA}$ , CW.

| Frequency | Pin (dBm) | Gp (dB) | P <sub>OUT</sub> (W) | η <sub>D</sub> (%) |
|-----------|-----------|---------|----------------------|--------------------|
| 40.68MHz  | 33        | 20      | 203                  | 81                 |

#### **Features**

- High Efficiency and Linear Gain Operations
- Integrated ESD Protection
- Excellent thermal stability, low HCI drift
- Large Positive and Negative Gate/Source Voltage Range for Improved Class C Operation
- · Pb-free, RoHS-compliant

## **Suitable Applications**

- 2-30MHz (HF or Short wave communication)
- 30-88MHz (Ground communication)
- 54-88MHz (TV VHF I)
- 88-108MHz (FM)
- 118 -140MHz (Avionics)

- 136-174MHz (Commercial ground communication)
- 160-230MHz (TV VHF III)

**Table 1. Maximum Ratings** 

| Rating                         | Symbol           | Value       | Unit |
|--------------------------------|------------------|-------------|------|
| DrainSource Voltage            | V <sub>DSS</sub> | +95         | Vdc  |
| GateSource Voltage             | $V_{GS}$         | -10 to +10  | Vdc  |
| Operating Voltage              | $V_{DD}$         | +36         | Vdc  |
| Storage Temperature Range      | Tstg             | -65 to +150 | °C   |
| Case Operating Temperature     | Tc               | +150        | °C   |
| Operating Junction Temperature | TJ               | +225        | °C   |

#### **Table 2. Thermal Characteristics**

| Characteristic                                        | Symbol | Value | Unit  |
|-------------------------------------------------------|--------|-------|-------|
| Thermal Resistance, Junction to Case                  | Do 10  | 0.55  | °C/W  |
| T <sub>C</sub> = 85°C, T <sub>J</sub> =200°C, DC test | Rejc   | 0.55  | -C/VV |

### **Table 3. ESD Protection Characteristics**

| Test Methodology                  | Class   |
|-----------------------------------|---------|
| Human Body Model (per JESD22A114) | Class 2 |

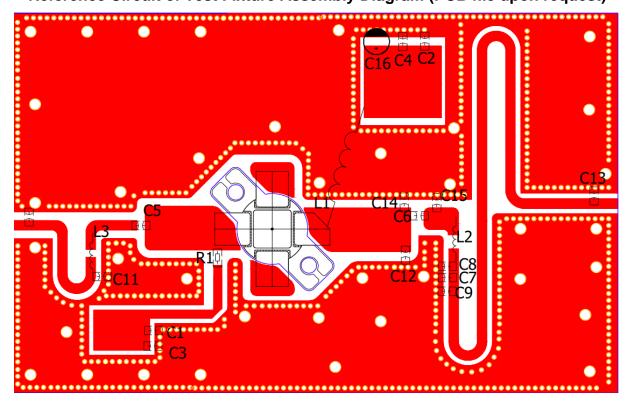
# **MV0520X LDMOS TRANSISTOR**

Table 4. Electrical Characteristics (TA = 25  $^{\circ}$ C unless otherwise noted)

| ·                                                                                   |                                 |               | 1            | 1            |        |
|-------------------------------------------------------------------------------------|---------------------------------|---------------|--------------|--------------|--------|
| Characteristic                                                                      | Symbol                          | Min           | Тур          | Max          | Unit   |
| DC Characteristics                                                                  |                                 |               |              |              |        |
| Drain-Source Voltage                                                                | V                               | 95            |              |              | V      |
| $V_{GS}$ =0, $I_{DS}$ =1.0mA                                                        | $V_{(BR)DSS}$                   |               |              |              | V      |
| Zero Gate Voltage Drain Leakage Current                                             |                                 |               |              | 4            | ^      |
| $(V_{DS} = 75V, V_{GS} = 0 V)$                                                      | I <sub>DSS</sub>                |               |              | 1            | μΑ     |
| Zero Gate Voltage Drain Leakage Current                                             |                                 |               |              | 4            | ^      |
| $(V_{DS} = 28 \text{ V}, V_{GS} = 0 \text{ V})$                                     | I <sub>DSS</sub>                |               |              | 1            | μΑ     |
| GateSource Leakage Current                                                          |                                 |               |              | 4            |        |
| $(V_{GS} = 10 \text{ V}, V_{DS} = 0 \text{ V})$                                     | I <sub>GSS</sub>                |               |              | 1            | μΑ     |
| Gate Threshold Voltage                                                              | M. m.                           |               | 2.2          |              |        |
| $(V_{DS} = 28V, I_D = 400 \mu A)$                                                   | V <sub>GS</sub> (th)            |               | 2.2          |              | V      |
| Gate Quiescent Voltage                                                              | .,                              |               | 0.05         |              |        |
| $(V_{DD} = 28 \text{ V}, I_D = 150 \text{ mA}, \text{Measured in Functional Test})$ | $V_{GS(Q)}$                     |               | 3.05         |              | V      |
| Common Source Input Capacitance                                                     | 0                               |               | 407          |              |        |
| $(V_{GS} = 0V, V_{DS} = 28 V, f = 1 MHz)$                                           | C <sub>ISS</sub>                |               | 187          |              | pF     |
| Common Source Output Capacitance                                                    |                                 |               |              | _            |        |
| $(V_{GS} = 0V, V_{DS} = 28 V, f = 1 MHz)$                                           | Coss                            |               | 79           |              | pF     |
| Common Source Feedback Capacitance                                                  |                                 |               |              |              |        |
| $(V_{GS} = 0V, V_{DS} = 28 V, f = 1 MHz)$                                           | $C_{RSS}$                       |               | 4.6          |              | pF     |
| Functional Tests (In Demo Test Fixture, 50 ohm system) $V_{DD} = 28 \text{ V}$      | /dc, I <sub>DQ</sub> = 150mA, f | = 150 MHz, Pi | n=2W, CW Sig | nal Measurem | nents. |
|                                                                                     |                                 |               |              |              |        |

|                       |                  |    | -   | • |    |
|-----------------------|------------------|----|-----|---|----|
| Power Gain            | Gp               | —— | 20  |   | dB |
| Drain Efficiency@Pout | η <sub>D</sub>   |    | 80  |   | %  |
| Output Power          | P <sub>out</sub> |    | 200 |   | W  |
| Input Return Loss     | IRL              |    | -7  |   | dB |

Load Mismatch (In Innogration Test Fixture, 50 ohm system): V<sub>DD</sub> = 28 Vdc, I<sub>DQ</sub> = 150 mA, f = 150 MHz


| VSWR 20:1 at 200W pulse CW Output Power | No Device Degradation |
|-----------------------------------------|-----------------------|
|-----------------------------------------|-----------------------|

### TYPICAL CHARACTERISTICS

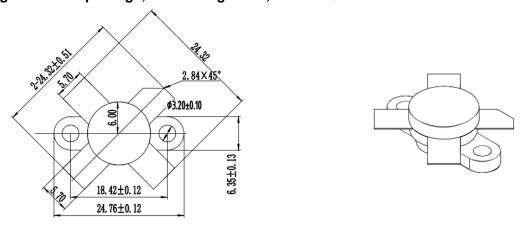
Figure 1: Network analyzer output S11/221

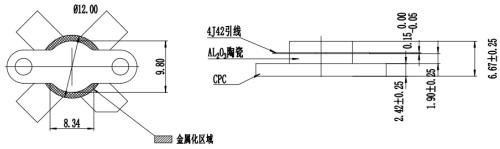


Reference Circuit of Test Fixture Assembly Diagram (PCB file upon request)



# **MV0520X LDMOS TRANSISTOR**


Table 1. Test Circuit Component Designations and Values (40.68MHz)


| Component | Description        | Suggestion             |
|-----------|--------------------|------------------------|
| C1,C2     | 10uF               | 10uF/100V              |
| C3~C6     | 10nF               | 10nF/100V              |
| C7,C8     | 150pF              | MQ101111               |
| C9        | 39pF               | MQ101111               |
| C10       | 120pF              | MQ101111               |
| C11       | 47pF               | MQ101111               |
| C12       | 18pF               | MQ101111               |
| C13       | 12pF               | MQ101111               |
| C14       | 200pF              | MQ101111               |
| C15       | 470uF/63V          | Electrolytic Capacitor |
| R1        | 10 Ω               | Chip Resistor          |
| L1        | 1.5mm/5mm, 8 turns |                        |
| L2        | 1.5mm/5mm, 4 turns |                        |
| L3        | 1.5mm/5mm, 6 turns |                        |
| PCB       | 30Mil              | Rogers4350             |

# **MV0520X LDMOS TRANSISTOR**

## **Package Outline**

Flanged ceramic package; 2 mounting holes; 2 leads (1—Gate, 2—Drain, 3—Source)





#### 技术要求:

- 1. 未注尺寸公差±0.15;
- 2. 全镀金: 外底面、内腔以及引线中心Ni:2.54-11.43 μm, 金2.54-4 μm;
- 3. 图示阴影部分为金属化区。
- 4. 单位:mm.

## **Revision history**

Table 5. Document revision history

| Date      | Revision | Datasheet Status                               |
|-----------|----------|------------------------------------------------|
| 2021/3/26 | Rev 1.0  | Preliminary datasheet                          |
| 2025/1/13 | Rev 1.1  | Modify the PCB layout according to V4E package |

Applicaion data based on TC-24-22

#### **Disclaimers**

Specifications are subject to change without notice. Innogration believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Innogration for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Innogration . Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Innogration in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility. For any concerns or questions related to terms or conditions, pls check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.