
## 2500W, 50V High Power RF LDMOS Paired FETs

### **Description**

The MF012K5VPX is a 2500W capable, highly rugged, Push pull and unmatched LDMOS FET, designed for commercial and industrial applications with frequencies HF to 200MHz. It is featured for industry leading high power and high ruggedness, suitable for Industrial, Scientific and Medical application, as well as HF communication under the signal condition of CW or pulsed CW or any modulation format



Typical performance on different narrow band application board with devices soldered

| Freq(MHz) | Voltage(V) | Signal type | Pin(dBm) | Pout(W)   | Power Gain(dB) | Eff(%) | Remark            |
|-----------|------------|-------------|----------|-----------|----------------|--------|-------------------|
| 13.56     | 36         | CW          | 42.5     | 1250      | 19             | 83     | Compact LC        |
| 27.12     | 36         | CW          | 43       | 1250      | 18.5           | 83     | Compact LC        |
| 40.68     | 36         | CW          | 44       | 1400      | 17.5           | 82     | Compact LC        |
| 60        | 42/36      | CW          | 42       | 1450/1050 | 19.8           | 90     | Microwave Balun   |
| 98        | 50         | Pulse       | 46       | 2800      | 18             | 75     | High power tuning |
| 175       | 50         | CW          | 48       | 1800      | 14.5           | 80     |                   |

Application reports upon request

#### **Features**

- High Efficiency and Linear Gain Operations
- Integrated ESD Protection
- Excellent thermal stability, low HCI drift
- Large Positive and Negative Gate/Source Voltage Range for Improved Class C Operation
- Pb-free, RoHS-compliant

#### **Suitable Applications**

- 30-88MHz (Ground communication)
- 54-88MHz (TV VHF I)
- 88-108MHz (FM)
- 136-174MHz (Commercial ground communication)
- Laser Exciter
- Synchrotron
- MRI
- Plasma generator
- Weather Radar

#### **Table 1. Maximum Ratings**

| <del>_</del>                   |                  |             |      |
|--------------------------------|------------------|-------------|------|
| Rating                         | Symbol           | Value       | Unit |
| DrainSource Voltage            | V <sub>DSS</sub> | +140        | Vdc  |
| GateSource Voltage             | V <sub>GS</sub>  | -10 to +10  | Vdc  |
| Operating Voltage              | V <sub>DD</sub>  | +55         | Vdc  |
| Storage Temperature Range      | Tstg             | -65 to +150 | °C   |
| Case Operating Temperature     | Tc               | +150        | °C   |
| Operating Junction Temperature | T <sub>J</sub>   | +225        | °C   |

#### **Table 2. Thermal Characteristics**

| Characteristic                                    | Symbol | Value | Unit |
|---------------------------------------------------|--------|-------|------|
| Transient thermal impedance from junction to case | 746    | 0.043 | 0000 |
| Tj = 95° C; measured under RF condition           | Zth    | 0.013 | °C/W |

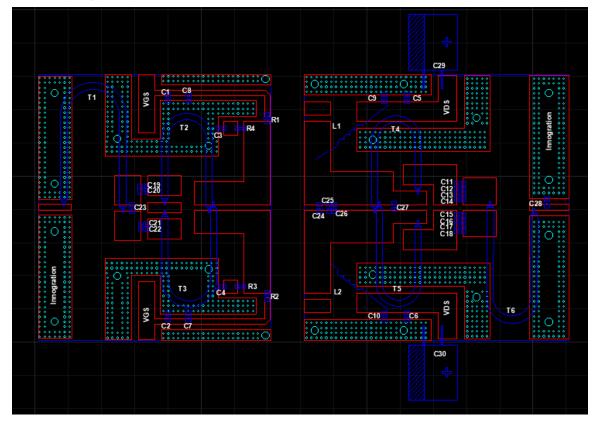
#### **Table 3. ESD Protection Characteristics**

| Tost Mothodology  | Class |
|-------------------|-------|
| I EST METHODOLOGA | Class |
|                   |       |

Document Number: MF012K5VPX Preliminary Datasheet V2.2

Human Body Model (per JESD22--A114) Class 2

**Table 4. Electrical Characteristics** ( $T_A = 25$  °C unless otherwise noted)


| Characteristic                                                                      | Symbol                               | Min | Тур | Max | Unit |
|-------------------------------------------------------------------------------------|--------------------------------------|-----|-----|-----|------|
| DC Characteristics (per half section)                                               | C Characteristics (per half section) |     |     |     |      |
| Drain-Source Voltage                                                                | V <sub>(BR)DSS</sub>                 |     | 140 |     | V    |
| V <sub>GS</sub> =0, I <sub>DS</sub> =1.0mA                                          | V (BR)DSS                            |     | 140 |     | V    |
| Zero Gate Voltage Drain Leakage Current                                             | I <sub>pss</sub>                     |     |     | 1   | μΑ   |
| $(V_{DS} = 50 \text{ V}, V_{GS} = 0 \text{ V})$                                     | IDSS                                 |     |     | ı   | μА   |
| GateSource Leakage Current                                                          | I <sub>GSS</sub>                     |     |     | 1   | μА   |
| $(V_{GS} = 10 \text{ V}, V_{DS} = 0 \text{ V})$                                     | IGSS                                 |     |     | '   | μΑ   |
| Gate Threshold Voltage                                                              | V <sub>GS</sub> (th)                 |     | 2.0 |     | V    |
| $(V_{DS} = 50V, I_D = 600 \mu A)$                                                   | V GS(III)                            |     | 2.0 |     | v    |
| Gate Quiescent Voltage                                                              | $V_{GS(Q)}$                          |     | 3.2 |     | V    |
| $(V_{DD} = 50 \text{ V}, I_D = 300 \text{ mA}, \text{Measured in Functional Test})$ | ▼ GS(Q)                              |     | 0.2 |     | •    |

Load Mismatch (In Innogration Test Fixture, 50 ohm system):  $V_{DD} = 50 \text{ Vdc}$ ,  $I_{DQ} = 300 \text{ mA}$ , f = 98 MHz, pulse width:100us, duty cycle:10%,

| 65: 1, at 2500W Pulsed CW Output Power | No Device Degradation |
|----------------------------------------|-----------------------|
|----------------------------------------|-----------------------|

### Reference Circuit of Test Fixture (98MHz Power Amplifier)

Note: This demo board is used for short time demonstration only, for long time CW operation, heat management for some components might needed



**Table 5. Test Circuit Component Designations and Values** 

| Component | Description        | Suggestion             |
|-----------|--------------------|------------------------|
| C1~C6     | 10uF               | 10uF/100V              |
| C7~C22    | 910pF              | MQ101111               |
| C23,C25   | 68pF               | MQ101111               |
| C24       | 20pF               | MQ101111               |
| C26,C27   | 30pF               | MQ101111               |
| C28       | 3pF                | MQ101111               |
| C29,C30   | 4700uF/63V         | Electrolytic Capacitor |
| R1,R2     | 220 Ω              | Chip Resistor          |
| R3,R4     | 10Ω                | Chip Resistor          |
| T1        | 50 ohm,135mm       | RFSFBU-086-50          |
| T2,T3     | 25ohm,135mm        | RFSFBU-086-25          |
| T4,T5     | 12.5ohm,135mm      | SFF-12.5-3             |
| T6        | 16.7ohm,200mm      | SFF-16.7-3             |
| L1,L2     | d=2mm,D=5mm,4Turns |                        |
| PCB       | 30Mil              | Rogers4350             |

### TYPICAL CHARACTERISTICS

Figure 1: Pulsed CW Gain and Power Efficiency as a Function of Pout @98MHz at 50V

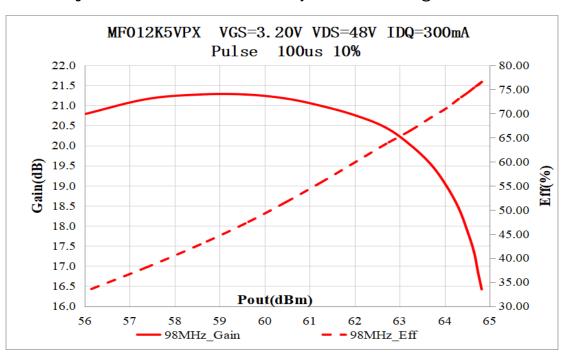
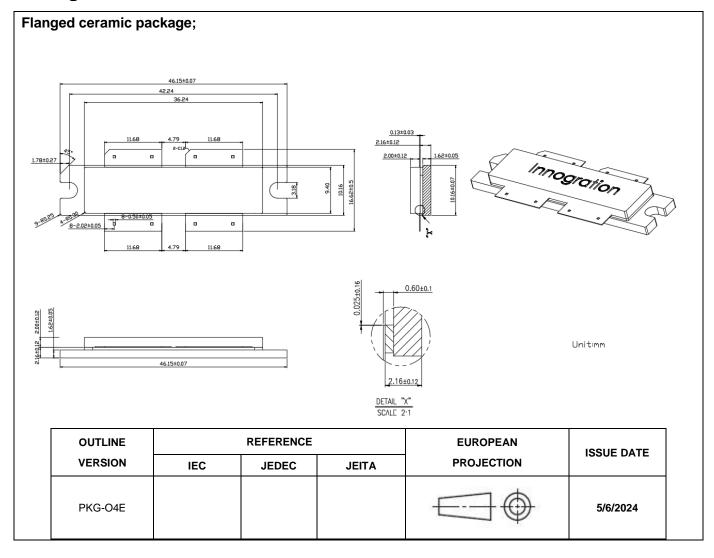






Figure 2: Network analyzer output S11/S21

## **Package Outline**



Document Number: MF012K5VPX Preliminary Datasheet V2.2

### **Revision history**

Table 5. Document revision history

| Date       | Revision | Datasheet Status                                                       |
|------------|----------|------------------------------------------------------------------------|
| 2023/11/24 | Rev 1.0  | Preliminary datasheet creation                                         |
| 2024/5/6   | Rev 2.0  | Package applied to finalized O4E                                       |
| 2024/5/29  | Rev 2.1  | Change the characterization using 98MHz new data                       |
| 2024/8/23  | Rev 2.2  | Add 13.56M/175MHz/60M/40.68M application data, change the upper limits |
|            |          | to 200MHz                                                              |

Application data based on HL-24-18&36/LBG-24-26/SYX-24-30/HL-24-38/39

#### **Disclaimers**

Specifications are subject to change without notice. Innogration believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Innogration for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Innogration . Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Innogration in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility. For any concerns or questions related to terms or conditions, pls check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.