Document Number: GTAH58008C6 Preliminary Datasheet V1.2 ## **GaN HEMT 28V, 5.8GHz 8W, RF Power Transistor Description** The GTAH58008C6 is a 8W GaN HEMT, designed for multiple applications from HF up to 5.8GHz The transistor is available in a highly cost effective 10*6mm, surface mount, QFN package with100% production test to ensure the quality and consistency. It can be used in CW, Pulse and any other modulation modes. Typical 5.1-5.9G Class AB RF Performance CW. Vds=28V. Ida=20mA GTAH58008C6 | o.,, 1.50 _o., 1.54 _o., 1. | | | | | | | | |-----------------------------|-------|------|--------|----------|-------|-------|--------| | Freq | P1dB | P1dB | P1dB | P1dB | P3dB | P3dB | P3dB | | (MHz) | (dBm) | (W) | Eff(%) | Gain(dB) | (dBm) | (W) | Eff(%) | | 5100 | 39.64 | 9.20 | 51.86 | 14.50 | 40.92 | 12.36 | 56.86 | | 5200 | 39.57 | 9.05 | 53.55 | 15.11 | 40.76 | 11.91 | 57.61 | | 5300 | 39.49 | 8.89 | 54.52 | 15.45 | 40.48 | 11.17 | 56.91 | | 5400 | 39.24 | 8.40 | 54.66 | 15.84 | 40.12 | 10.27 | 55.38 | | 5500 | 39.07 | 8.07 | 54.54 | 16.03 | 40.04 | 10.10 | 56.57 | | 5600 | 39.02 | 7.97 | 56.11 | 16.33 | 40.20 | 10.47 | 61.18 | | 5700 | 38.84 | 7.66 | 57.85 | 16.57 | 39.97 | 9.94 | 62.05 | | 5800 | 38.57 | 7.20 | 57.05 | 16.14 | 39.67 | 9.26 | 60.35 | | 5900 | 38.51 | 7.09 | 54.14 | 14.95 | 39.49 | 8.89 | 56.67 | Typical 4.3-4.6G Class AB RF Performance CW, Vds=28V, Idq=20mA | Freq | P1dB | P1dB | P1dB | P1dB | P3dB | P3dB | P3dB | |------------------|--------|------|--------|----------|-------|------|--------| | (MHz) | (dBm) | (W) | Eff(%) | Gain(dB) | (dBm) | (W) | Eff(%) | | 4390 | 38. 58 | 7.2 | 50.2 | 11.66 | 40.2 | 10.5 | 55.8 | | 4500 | 38.64 | 7.3 | 49.6 | 11. 47 | 40.13 | 10.3 | 54.6 | | 4610 | 38. 52 | 7. 1 | 49.7 | 12.64 | 40.01 | 10.0 | 54. 4 | #### **Applications** - C band power amplifier - ISM/RF Energy power amplifier #### **Important Note: Proper Biasing Sequence for GaN HEMT Transistors** #### Turning the device ON - 1. Set VGS to the pinch--off (VP) voltage, typically -5 V - 2. Turn on VDS to nominal supply voltage - 3. Increase VGS until IDS current is attained - 4. Apply RF input power to desired level #### Turning the device OFF - 1. Turn RF power off - 2. Reduce VGS down to VP, typically -5 V - 3. Reduce VDS down to 0 V - 4. Turn off VGS Document Number: GTAH58008C6 Preliminary Datasheet V1.2 Figure 1: Pin Connection definition #### Transparent top view (Backside grounding for source) | Pin No. Symbol | | Description | | | |----------------------------|------------|--|--|--| | 8,9,10,11 | RF IN/Vgs | RF Input, Vgs bias | | | | 32,33,34,35 | RF OUT/VDD | RFOutput, Drain bias | | | | | 0115 | DC/RF Ground. Must be soldered directly to heatsink or copper coin for | | | | Rest Pins and Package Base | GND | CW application. | | | #### **Table 1. Maximum Ratings** | Rating | Symbol | Value | Unit | |--------------------------------|------------------|-------------|------| | DrainSource Voltage | V _{DSS} | +150 | Vdc | | GateSource Voltage | V_{GS} | -8 to +0.5 | Vdc | | Operating Voltage | V_{DD} | 36 | Vdc | | Maximum gate current | Igs | 2 | mA | | Storage Temperature Range | Tstg | -65 to +150 | °C | | Case Operating Temperature | T _C | +150 | °C | | Operating Junction Temperature | TJ | +225 | °C | #### **Table 2. Thermal Characteristics** | Characteristic | Symbol | Value | Unit | |---|--------|-------|--------| | Thermal Resistance, Junction to Case by FEA | Do 10 | 10 | 00 /// | | T _C = 85°C, at Pdiss=7W | Rejc | 10 | °C /W | #### Table 3. Electrical Characteristics (TA = 25℃ unless otherwise noted) #### DC Characteristics (main path, measured on wafer prior to packaging) | Characteristic | Conditions | Symbol | Min | Тур | Max | Unit | |--------------------------------|--|------------------|-----|------|-----|------| | Drain-Source Breakdown Voltage | VGS=-8V; IDS=2mA | V _{DSS} | | 200 | | V | | Gate Threshold Voltage | VDS =10V, ID = 2mA | $V_{GS(th)}$ | -4 | | -2 | V | | Gate Quiescent Voltage | VDS =28V, IDS=20mA,
Measured in Functional Test | $V_{GS(Q)}$ | | -2.6 | | V | #### **Ruggedness Characteristics** | Characteristic | Conditions | Symbol | Min | Тур | Max | Unit | |--------------------------|---------------------------|--------|-----|------|-----|------| | Load mismatch capability | 5.8GHz, Pout=8W Pulsed CW | | | | | | | | All phase, | VSWR | | 10:1 | | | | | No device damages | | | | | | Figure 2: Median Lifetime vs. Channel Temperature 5.1-5.9G ### **Typical performance** Figure 3: Efficiency and power gain as function of Pout Figure 4: Network analyzer output S11/S21 Figure 5: Picture of application board Table 4. Bill of materials of application board (PCB layout upon request, RO4350B 20mils) | Component | Value | Quantity | |-------------|-------------|----------| | U1 | GTAH58008C6 | 1 | | C1、C2、C3、C4 | 3.3pF | 4 | | C5、C6 | 10uF/63V | 2 | | С7 | 470uF/63V | 1 | | R1 | 10Ω | 1 | | | | | ### 4.3-4.6G ### **Typical performance** Figure 6: Efficiency and power gain as function of Pout Figure 7: Network analyzer output S11/S21 Figure 8: Picture of application board Table 5. Bill of materials of application board (PCB layout upon request, RO4350B 20mils) | Reference | Footprint | Value | |-------------|-----------|-------------| | C1,C2,C3,C5 | 0603 | 3.9 pF | | C4,C6,C7 | 1210 | 10 uF/63V | | C8 | \ | 470 uF/63V | | R1 | 0603 | 10 ohm | | U1 | C6 | GTAH58008C6 | Document Number: GTAH58008C6 Preliminary Datasheet V1.2 - 1. All dimensions are in mm; - 2. The tolerances unless specified are ±0.2mm. #### **Revision history** **Table 4. Document revision history** | Date | Revision | Datasheet Status | |-----------|-------------------------------------|---| | 2024/5/14 | V1.0 Preliminary Datasheet Creation | | | 2025/6/13 | V1.1 | Add 4.3-4.6G data | | 2025/8/26 | V1.2 | Modify S11/S21 curve with increased Idq | | | | | Application data based on: CWZ-24-09/25-06 #### **Notice** Specifications are subject to change without notice. Innogration believes the information within the data sheet to be reliable. Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameter is the average values expected by Innogration in quantities and are provided for information purposes only. It can and do vary in different applications and related performance can vary over time. All parameters should be validated by customer's technical experts for each application. Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility. For any concerns or questions related to terms or conditions, please check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.