Document Number: SU3014V Preliminary Datasheet V1.2 ## Gallium Nitride 50V 140W, RF Power Transistor #### **Description** The SU3014V is a 140W single ended GaN HEMT, designed for multiple applications with frequencies up to 4GHz. It is thermally optimized for wideband CW operation There is no guarantee of performance when this part is used in applications designed Outside of these frequencies. Typical performance (on fixture with device soldered): | SU3014V VGS=-3.17V VDS=50V IDQ=200mA CW | | | | | | | | | |---|-----------|---------|--------|----------|----------|--------|--------------------|--------------------| | Freq(MHz) | Pout(dBm) | Pout(W) | IDS(A) | Pin(dBm) | Gain(dB) | Eff(%) | 2nd harmonic (dBc) | 3rd harmonic (dBc) | | 500 | 50.89 | 122.7 | 4.76 | 38.87 | 12.02 | 51.57 | -10.60 | -15.60 | | 600 | 51.23 | 132.7 | 5.85 | 38.59 | 12.64 | 45.38 | -11.70 | -14.10 | | 700 | 51.72 | 148.6 | 6.03 | 38.64 | 13.08 | 49.28 | -12.60 | -14.40 | | 800 | 52.52 | 178.6 | 5.84 | 39.81 | 12.71 | 61.18 | -14.00 | -13.30 | | 900 | 52.48 | 177.0 | 5.07 | 40.09 | 12.39 | 69.83 | -15.40 | -12.70 | | 1000 | 52.27 | 168.7 | 4.77 | 39.39 | 12.88 | 70.72 | -17.00 | -14.00 | | 1100 | 52.04 | 160.0 | 4.6 | 39.3 | 12.74 | 69.55 | -18.50 | -14.70 | | 1200 | 51.98 | 157.8 | 4.93 | 40.13 | 11.85 | 64.00 | -20.80 | -24.40 | | 1300 | 52.15 | 164.1 | 5.34 | 39.95 | 12.2 | 61.45 | -26.30 | -24.40 | | 1400 | 52.2 | 166.0 | 5.62 | 39.75 | 12.45 | 59.06 | -25.80 | -47.10 | | 1500 | 51.9 | 154.9 | 5.27 | 39.64 | 12.26 | 58.78 | -20.00 | -24.40 | | 1600 | 51.63 | 145.5 | 5.13 | 39.82 | 11.81 | 56.74 | -24.10 | -23.60 | | 1700 | 51.43 | 139.0 | 5.03 | 39.33 | 12.1 | 55.27 | -26.20 | -36.50 | | 1800 | 51.71 | 148.3 | 5.15 | 39.91 | 11.8 | 57.57 | -32.20 | -30.70 | | 1900 | 51.71 | 148.3 | 5.48 | 39.73 | 11.98 | 54.11 | -37.30 | -34.40 | | 2000 | 51.2 | 131.8 | 5.06 | 40.5 | 10.7 | 52.11 | -51.30 | -26.00 | | 2100 | 51.22 | 132.4 | 5.14 | 41.35 | 9.87 | 51.53 | -61.00 | -37.00 | | 2200 | 51.04 | 127.1 | 5.13 | 41.33 | 9.71 | 49.54 | -43.00 | -37.00 | | 2300 | 51.24 | 133.0 | 5.22 | 40.29 | 10.95 | 50.98 | -42.50 | -33.30 | | 2400 | 51.46 | 140.0 | 5.31 | 40.71 | 10.75 | 52.72 | -35.10 | -25.00 | | 2500 | 51.54 | 142.6 | 5 | 40.86 | 10.68 | 57.02 | -39.10 | -25.80 | #### **Applications and Features** - Suitable for wireless communication infrastructure, wideband amplifier, EMC testing, ISM etc. - High Efficiency and Linear Gain Operations - Thermally Enhanced Industry Standard Package - High Reliability Metallization Process - Excellent thermal Stability and Excellent Ruggedness - Compliant to Restriction of Hazardous Substances (RoHS) Directive 2002/95/EC Document Number: SU3014V Preliminary Datasheet V1.2 #### **Important Note: Proper Biasing Sequence for GaN HEMT Transistors** #### **Turning the device ON** - 1. Set VGS to the pinch--off (VP) voltage, typically -5 V - 2. Turn on VDS to nominal supply voltage (50V) - 3. Increase VGS until IDS current is attained - 4. Apply RF input power to desired level #### Turning the device OFF - 1. Turn RF power off - 2. Reduce VGS down to VP, typically -5 V - 3. Reduce VDS down to 0 V - 4. Turn off VGS #### **Table 1. Maximum Ratings** | Rating | Symbol | Value | Unit | |--------------------------------|------------------|-------------|------| | DrainSource Voltage | V _{DSS} | +200 | Vdc | | GateSource Voltage | V _{GS} | -8 to 0 | Vdc | | Operating Voltage | V _{DD} | 0 to 55 | Vdc | | Maximum forward gate current | Igf | 20 | mA | | Storage Temperature Range | Tstg | -65 to +150 | С | | Case Operating Temperature | T _C | -55 to +150 | С | | Operating Junction Temperature | Tj | +225 | С | #### **Table 2. Thermal Characteristics** | Characteristic | Symbol | Value | Unit | |--|--------|-------|-------| | Thermal Resistance, Junction to Case | Rejc | 1.2 | °C /W | | T _C = 25°C, Pdiss=100W, FEA | Keac | 1.2 | C/W | #### **Table 3. Electrical Characteristics** ($T_C = 25^{\circ}C$ unless otherwise noted) #### **DC Characteristics** | Characteristic | Conditions | Symbol | Min | Тур | Max | Unit | |--------------------------------|--|----------------------|-----|-------|-----|------| | Drain-Source Breakdown Voltage | V _{GS} =-8V; I _{DS} =20mA | V _{DSS} | | 200 | | V | | Gate Threshold Voltage | V _{DS} = 50V, I _D = 20mA | V _{GS} (th) | -4 | | -2 | ٧ | | Gate Quiescent Voltage | V _{DS} =50V, I _{DS} =200mA,
Measured in Functional Test | V _{GS(Q)} | | -3.18 | | V | #### Functional Tests (In Innogration broadband Test Fixture, 50 ohm system): VDD = 50 Vdc, IDQ = 200 mA, f = 1300 MHz, Pulsed CW | Characteristic | Symbol | Min | Тур | Max | Unit | |---|--------|-----|------|-----|------| | Power Gain @ Psat | Gp | | 13 | | dB | | Drain Efficiency@Psat | Eff | | 60 | | % | | 3dB Compressed point | Psat | 140 | 160 | | W | | Input Return Loss | IRL | | -4 | | dB | | Mismatch stress at all phases(No device damage) | VSWR | | 10:1 | | Ψ | ## **Reference Circuit of Test Fixture Assembly Diagram** Figure 1. Test Circuit Component Layout (500MHz~2500MHz) **Table 4. Test Circuit Component Designations and Values** | Designator | Comment | Footprint | Quantity | | |------------|-----------|-----------|----------|--| | C1 | 18pF | 0805 | 1 | | | C2 | 120pF | 0805 | 1 | | | C3 | 82pF | 1210 | 1 | | | C4, C5 | 10uF/100V | 1210 | 4 | | | C6 | 100pF | ATC800R | 1 | | | R1 | 360ohm | 0603 | 1 | | | C7,C8 | 1.5pF | 0805 | 2 | | | C9 | 1.5pF | 1210 | 1 | | Document Number: SU3014V Preliminary Datasheet V1.2 ## **Package Outline** Flanged ceramic package; 2 leads Figure 1. Package Outline PKG-G2E Document Number: SU3014V Preliminary Datasheet V1.2 ## **Revision history** **Table 4. Document revision history** | Date | Revision | Datasheet Status | |-----------|----------|--------------------------------| | 2023/3/10 | V1.0 | Preliminary Datasheet Creation | | 2024/6/24 | V1.1 | State its upper limits to 4GHz | | 2024/8/13 | V1.2 | Update on package tolerance | Application data based HL-23-09 #### **Notice** Specifications are subject to change without notice. Innogration believes the information within the data sheet to be reliable. Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameter is the average values expected by Innogration in quantities and are provided for information purposes only. It can and do vary in different applications and related performance can vary over time. All parameters should be validated by customer's technical experts for each application. Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility. For any concerns or questions related to terms or conditions, please check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.