
40W, 12.5V High Power RF LDMOS FETs

Description

The MU1513G is a 40-watt P1dB (50W P3dB) high performance, unmatched LDMOS FET, designed for wide-band commercial and industrial applications with frequencies HF to 0.5 GHz.

•Typical 520MHz Performance (On Innogration fixture with device soldered):

V _{ds} = 12.5V, V _{gs} =2.49V,I _{dq} =120mA					
Test signal	P-1(dBm)	P-1Gain(dB)	P-3(dBm)	P-3(W)	EFF (%)
CW	46.17	24.9	47.21	52.6	70.4

Features

- High Efficiency and Linear Gain Operations
- Integrated ESD Protection
- Excellent thermal stability, low HCI drift
- Large Positive and Negative Gate/Source Voltage Range for Improved Class C Operation
- Pb-free, RoHS-compliant

Suitable Applications

- 2-30MHz (HF or Short wave communication)
- 30-88MHz (Ground communication)
- 54-88MHz (TV VHF I)
- 88-108MHz (FM)
- 118 -140MHz (Avionics)

- 136-174MHz (Commercial ground communication)
- 160-230MHz (TV VHF III)
- 30-512MHz (Jammer, Ground/Air communication)

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
DrainSource Voltage	$V_{\scriptscriptstyle DSS}$	+65	Vdc
GateSource Voltage	$V_{\sf GS}$	-10 to +10	Vdc
Operating Voltage	V_{DD}	+28	Vdc
Storage Temperature Range	Tstg	-65 to +150	°C
Case Operating Temperature	Tc	+150	°C
Operating Junction Temperature	T,	+225	°C

Table 2. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction to Case	Dolo	0.50	00/14/
T _C = 85°C, T _J =200°C, DC test	RөJC	0.58	°C/W

Table 3. ESD Protection Characteristics

Test Methodology	Class
Human Body Model (per JESD22A114)	Class 2

Table 4. Electrical Characteristics (T_A = 25 °C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit	
----------------	--------	-----	-----	-----	------	--

MU1513G LDMOS TRANSISTOR

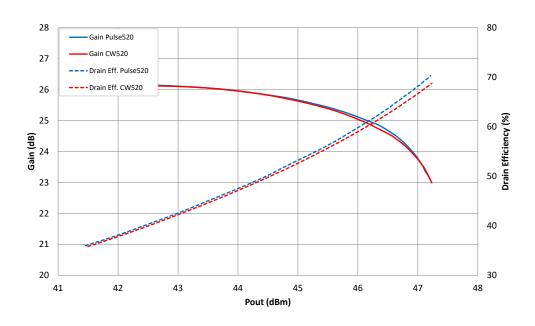
DC Characteristics

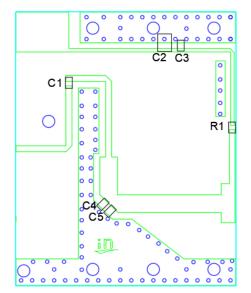
Drain-Source Voltage	$V_{(BR)DSS}$	65	70		V
V _{GS} =0, I _{DS} =1.0mA					
Zero Gate Voltage Drain Leakage Current	I _{DSS}			1	μА
$(V_{DS} = 28 \text{ V}, V_{GS} = 0 \text{ V})$	IDSS			'	μΑ
GateSource Leakage Current				1	^
$(V_{GS} = 10 \text{ V}, V_{DS} = 0 \text{ V})$	I _{GSS}			I	μА
Gate Threshold Voltage	V (u)		1.98		V
$(V_{DS} = 28V, I_D = 600 \mu A)$	$V_{GS}(th)$		1.90		V
Gate Quiescent Voltage	W		2.5		V
(V _{DD} = 28 V, I _D = 100 mA, Measured in Functional Test)	$V_{GS(Q)}$	<u>——</u>	2.5	<u>——</u>	V
Drain source on state resistance	D.1-()		440		0
$(V_{DS} = 0.1V, V_{GS} = 10 V)$	Rds(on)		110		mΩ
Common Source Input Capacitance			116		5 F
(V _{GS} = 0V, V _{DS} =28 V, f = 1 MHz)	C _{iss}		110		pF
Common Source Output Capacitance	0		50		F
(V _{GS} = 0V, V _{DS} =28 V, f = 1 MHz)	Coss		50		pF
Common Source Feedback Capacitance					~F
(V _{GS} = 0V, V _{DS} =28 V, f = 1 MHz)	C_{RSS}		2		pF

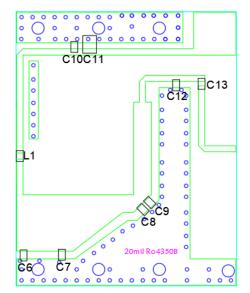
Functional Tests (In Demo Test Fixture, 50 ohm system) V_{DD} = 12.5 Vdc, I_{DQ} = 100 mA, f = 500 MHz, Pused CW Signal Measurements.

Power Gain	Gp	 24	 dB
Drain Efficiency@P1dB	η₀	 65	 %
1 dB Compression Point	P _{-1dB}	40	W

Load Mismatch (In Innogration Test Fixture, 50 ohm system): $V_{DD} = 12.5 \text{ Vdc}$, $I_{DQ} = 100 \text{ mA}$, f = 500 MHz


VSWR 10:1 at 40W Pulsed CW Output Power No Device Degradation


Figure 1: Network analyzer Output S11/S21



MU1513G LDMOS TRANSISTOR

Figure 2: Power gain, efficiency as function of Pout

Component	Value	Description
C1,C3,C10,C13	220pF	MQ300805C
C2,C11	10uF	TDK1206
C4,C7	22pF	ATC600S
C5	5.1pF	ATC600S
C6	10pF	ATC600S
C8	20pF	ATC600S
C9	15pF	ATC600S
C12	1.8pF	ATC600S
R1	10 Ω	1
L1	32nH	

MU1513G LDMOS TRANSISTOR

Package Outline

Flanged ceramic package; 2 leads

Figure 1. Package Outline PKG-G2E

Revision history

Table 5. Document revision history

Date	Revision	Datasheet Status
2024/6/5	Rev 1.0	Preliminary Datasheet Creation
2025/6/13	Rev 1.1	Update the performance summary on 1st page after recalibration

Disclaimers

Specifications are subject to change without notice. Innogration believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Innogration for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Innogration . Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Innogration in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility. For any concerns or questions related to terms or conditions, pls check with Innogration and authorized distributors