Document Number: STBV36135AY2 Preliminary Datasheet V1.0

Gallium Nitride 50V, 135W,3.3-3.8GHz RF Power Transistor

Description

The STBV36135AY2 is a single ended 135watt, GaN HEMT, ideal for applications from 3.3 to 3.8GHz. It is an input matched transistor capable to support CW, pulse or any modulated signal.

There is no guarantee of performance when this part is used outside of stated frequencies.

Typical pulse CW and CW performance across 3.3-3.8GHz with device soldered

VDD = 50 Vdc, IDQ = 200mA, Pulse width=20us, CW Psat defined as no gate leakage current

Signal	Psat(W)	Power gain (dB)	Eff(%)@P3dB
Pulsed CW	142-185	11.5-12.5	57-62
CW	140-170	11-12	55-58

STBV36135AY2

Applications

- Sub-4GHz pulse or CW amplifier
- 5G base station amplifier
- S band Jammer

Important Note: Proper Biasing Sequence for GaN HEMT Transistors

Turning the device ON

- 1. Set VGS to the pinch--off (VP) voltage, typically –5 V
- 2. Turn on VDS to nominal supply voltage
- 3. Increase VGS until IDS current is attained
- 4. Apply RF input power to desired level

Turning the device OFF

- 1. Turn RF power off
- 2. Reduce VGS down to VP, typically -5 V
- 3. Reduce VDS down to 0 V
- 4. Turn off VGS

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
DrainSource Voltage	V_{DSS}	+200	Vdc
GateSource Voltage	V_{GS}	-8 to +0.5	Vdc
Operating Voltage	V_{DD}	55	Vdc
Maximum gate current	lgs	20	mA
Storage Temperature Range	Tstg	-65 to +150	°C
Case Operating Temperature	Tc	+150	°C
Operating Junction Temperature	TJ	+225	°C

Table 2. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction to Case by FEA	Do 10	1.1	°C /W
T _C = 25°C, at Pd=100W	Rejc	1.1	-0 /٧٧

Table 3. Electrical Characteristics (TA = 25℃ unless otherwise noted)

DC Characteristics (measured on wafer prior to packaging)

Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Drain-Source Breakdown Voltage	VGS=-8V; IDS=20mA	V_{DSS}		200		V

Document Number: STBV36135AY2 Preliminary Datasheet V1.0

Gate Threshold Voltage	VDS =10V, ID = 20mA	$V_{GS(th)}$	-4	-3	-2	V
Gate Quiescent Voltage	VDS =50V, IDS=200mA, Measured in Functional Test	$V_{GS(Q)}$		-3.3		V

Ruggedness Characteristics

Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Load mismatch capability	3.45GHz, Pout=135W pulse CW					
	for each path	VSWR		10:1		
	All phase,	70777		10.1		
	No device damages					

Figure 2: Median Lifetime vs. Channel Temperature

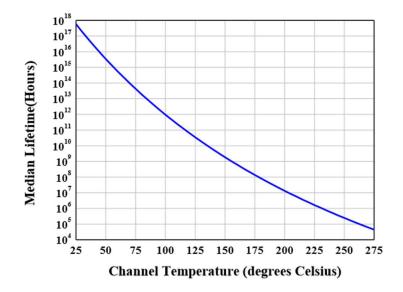


Figure 3: S11 / S21 output from network analyzer on 3.3-3.6GHz application board

Document Number: STBV36135AY2 Preliminary Datasheet V1.0

Figure 4: Picture of application board of 3.3-3.8GHz

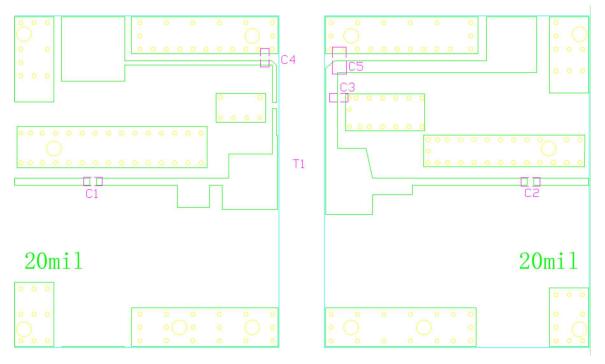
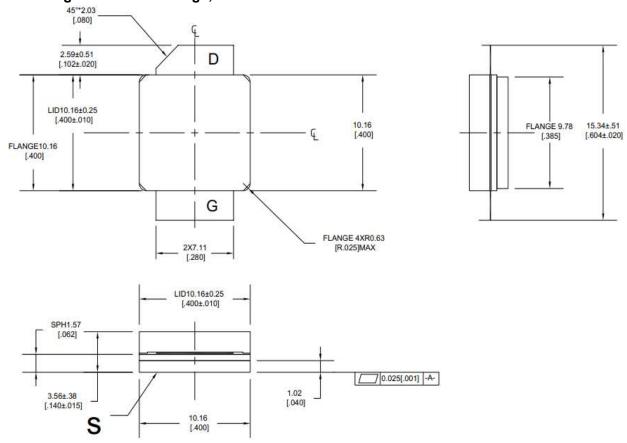



Table 4. Bill of materials of application board (PCB layout upon request, RO4350B 20mils)

		•	•	•
Part	Quantity	Description	Part Number	Manufacture
C1,C2,C3,C4	4	8.2pFHigh Q	251SHS8R2BSE	TEMEX
		Capacitor		
C5	1	10uF MLCC	GRM32EC72A106ME0	Murata
			5	
T1	1	135W GaN	STBV36135AY2	Innogration
		Dual Transistor		

Document Number: STBV36135AY2 Preliminary Datasheet V1.0

Earless Flanged Ceramic Package; 2 leads

Unit: mm [inch]

Tolerance .xx +/- 0.01 .xxx +/- 0.005 inches

Document Number: STBV36135AY2 Preliminary Datasheet V1.0

Revision history

Table 4. Document revision history

Date	Revision	Datasheet Status
2024/7/2	V1.0	Preliminary datasheet creation

Application data based on: LWH-24-23

Notice

Specifications are subject to change without notice. Innogration believes the information within the data sheet to be reliable. Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose.

"Typical" parameter is the average values expected by Innogration in quantities and are provided for information purposes only. It can and do vary in different applications and related performance can vary over time. All parameters should be validated by customer's technical experts for each application.

Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility.

For any concerns or questions related to terms or conditions, please check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.