
GaN 50V, 160W,2-3GHz RF Transistor

Description

The SG4016VS is a 160-watt, internally matched GaN HEMT, designed for CW applications with frequencies from 2000 to 3000MHz, in typical 2.3-2.7GHz, it can deliver 160W within full band. There is no guarantee of performance when this part is used in applications designed outside of these frequencies.

Typical CW Performance (On Innogration fixture with device soldered):

 $V_{DD} = 50 \text{ Volts}, I_{DQ} = 200 \text{ mA}$

Freq (MHz)	Power gain (dB)	Pout (dBm)	Pout (W)	Ids (A)	Eff (%)
2300	13.07	53.07	202.8	6.51	62.30
2400	13.80	53.00	199.5	6.24	63.97
2500	14.20	52.80	190.5	5.88	64.81
2600	13.70	52.56	180.3	5.57	64.74
2700	12.90	52.20	165.9	5.28	62.86

Applications and Features

- Suitable for broad band application in S band CW amplifier applications.
- Thermally Enhanced Industry Standard Package
- High Reliability Metallization Process
- Excellent thermal Stability and Excellent Ruggedness
- Compliant to Restriction of Hazardous Substances (RoHS) Directive 2002/95/EC

Important Note: Proper Biasing Sequence for GaN HEMT Transistors

- Turning the device ON
- 1) Set VGS to the pinch--off (VP) voltage, typically -5 V
- 2) Turn on VDS to nominal supply voltage (50 V)
- 3) Increase VGS until IDS current is attained
- 4) Apply RF input power to desired level
- Turning the device OFF
- 1) Turn RF power off
- 2) Reduce VGS down to VP, typically -5 V
- 3) Reduce VDS down to 0 V
- 4) Turn off VGS

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit	
DrainSource Voltage	V _{DSS}	+200	Vdc	
GateSource Voltage	V _{GS}	-8 to +0	Vdc	
Operating Voltage	V _{DD}	0 to 55	Vdc	
Maximum Forward Gate Current @ Tc = 25°C	Igmax	22	mA	

SG4016VS GaN TRANSISTOR

Document Number: SG4016VS Preliminary Datasheet V1.0

Storage Temperature Range	Tstg	-65 to +150	°C
Case Operating Temperature	Tc	+150	°C
Operating Junction Temperature	T٦	+225	°C

Table 2. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction to Case,P _{OUT} =160W CW	Rejc	1.0	°C/W
@3GHz by FEA	RejC	1.0	-0/00

Table 3. Electrical Characteristics (TA = 25° C unless otherwise noted)

DC Characteristics

Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Drain-Source Breakdown Voltage	V _{GS} =-8V; I _{DS} =22mA	V _{DSS}		200		V
Gate Threshold Voltage V _{DS} = 10V, I _D = 22mA		$V_{\text{GS}}(\text{th})$	-4		-2	V

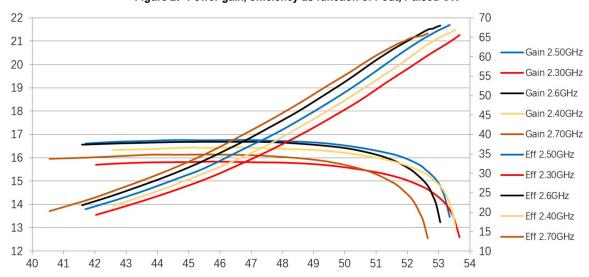
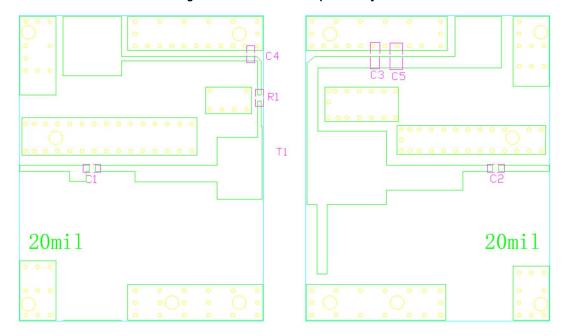
Load Mismatch (In Innogration Test Fixture, 50 ohm system): $V_{DD} = 50 \text{ Vdc}$, $I_{DQ} = 200 \text{ mA}$, f = 3000 MHz

VSWR 10:1 at 350W pulse CW Output Power	No Device Degradation
---	-----------------------

SG4016VS GaN TRANSISTOR

TYPICAL CHARACTERISTICS

Figure 2. Power gain, efficiency as function of Pout, Pulsed CW

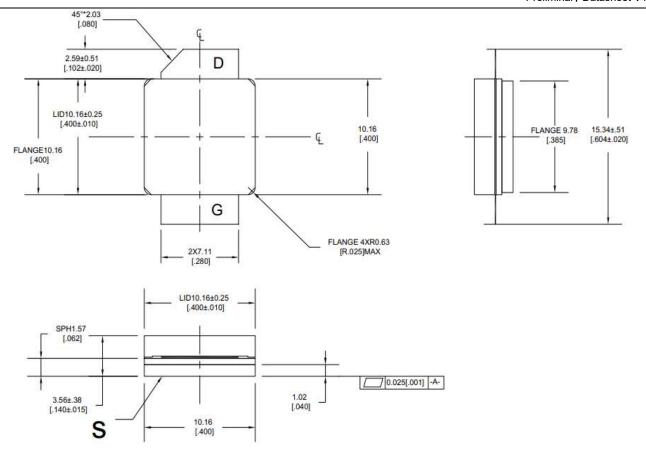

Figure 3. Test Circuit Component Layout

Table 4. Test Circuit Component Designations and Values

Part	Quantity	Description	Part Number	Manufacture
C1,C2,C3,C4	4	10pFHigh Q	251SHS100BSE	TEMEX
		Capacitor		
R1	1	10 Ω Power Resistor	ESR03EZPF100	ROHM
C5	1	10uF MLCC	GRM32EC72A106ME0	Murata
			5	
T1	1	160W GaN	SG4016VS	Innogration
		Dual Transistor		

SG4016VS GaN TRANSISTOR

Unit: mm [inch]

Tolerance .xx +/- 0.01 .xxx +/- 0.005 inches

Revision history

Table 5. Document revision history

Date	Revision	Datasheet Status
2024/7/3	Rev 1.0	Preliminary Datasheet

Application data based on LWH-24-25

Notice

Specifications are subject to change without notice. Innogration believes the information within the data sheet to be reliable. Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose.

"Typical" parameter is the average values expected by Innogration in quantities and are provided for information purposes only. It can and do vary in different applications and related performance can vary over time. All parameters should be validated by customer's technical experts for each application.

Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility.

For any concerns or questions related to terms or conditions, please check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.