
Innogration (Suzhou) Co., Ltd.

Document Number: GTAH15200B4C Preliminary Datasheet V1.0

GaN HEMT 28V, L band, 200W, RF Power Transistor Description

The GTAH15200B4C is a 200W , **single ended** GaN HEMT, designed for ISM/RF Energy application Within L band

 Typical Class AB RF Performance with device soldered Vds=28V, Vgs=-3V, CW

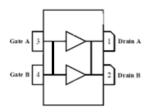
Freq	P1dB	P1dB	P1dB	P1dB	P3dB	P3dB	P3dB
(MHz)	(dBm)	(W)	Eff(%)	Gain(dB)	(dBm)	(W)	Eff(%)
1300	53.05	202.0	56.4	18.55	54.27	267.3	63.0
1400	52.38	172.9	58.7	19.05	54.34	271.6	69.7
1500	51.41	138.3	61.2	19.74	53.19	208.3	71.8

Applications

- L and P band power amplifier
- ISM/RF Energy power amplifier

Important Note: Proper Biasing Sequence for GaN HEMT Transistors

Turning the device ON


- 1. Set VGS to the pinch--off (VP) voltage, typically -5 V
- 2. Turn on VDS to nominal supply voltage
- 3. Increase VGS until IDS current is attained
- 4. Apply RF input power to desired level

Turning the device OFF

- 1. Turn RF power off
- 2. Reduce VGS down to VP, typically -5 V
- 3. Reduce VDS down to 0 V
- 4. Turn off VGS

Figure 1: Pin Connection definition

Transparent top view (Backside grounding for source)

*Notice: Both leads at input and output are internally connected, device is only usable as single ended

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit	
DrainSource Voltage	V _{DSS}	+150	Vdc	
GateSource Voltage	V _{GS}	-8 to +0.5	Vdc	
Operating Voltage	V _{DD}	36	Vdc	
Maximum gate current	lgs	60	mA	
Storage Temperature Range	Tstg	-65 to +150	°C	
Case Operating Temperature	T _C	+150	°C	

Innogration (Suzhou) Co., Ltd.

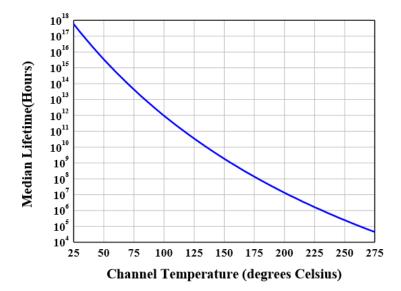
Document Number: GTAH15200B4C Preliminary Datasheet V1.0

Operating Junction Temperature	TJ	+225	°C
· · · · · · · · · · · · · · · · · · ·			

Table 2. Thermal Characteristics

Characteristic	Symbol	Value	Unit	
Thermal Resistance, Junction to Case by FEA	Rеjc	0.75	°C /W	
T _C = 85°C, at Pdiss=75W	Reju	0.75	C / VV	l

Table 3. Electrical Characteristics (TA = 25℃ unless otherwise noted)

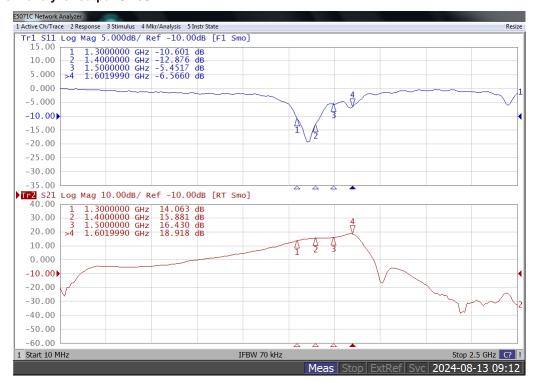

DC Characteristics (measured on wafer prior to packaging)

Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Drain-Source Breakdown Voltage	VGS=-8V; IDS=30mA	V _{DSS}		200		V
Gate Threshold Voltage	VDS =10V, ID = 30mA	$V_{GS(th)}$	-4		-2	V
Gate Quiescent Voltage	VDS =28V, IDS=500mA, Measured in Functional Test	$V_{GS(Q)}$		-2.4		V

Ruggedness Characteristics

Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Load mismatch capability	1.5GHz, Pout=200W Pulsed CW					
	All phase,	VSWR		10:1		
	No device damages					

Figure 2: Median Lifetime vs. Channel Temperature


Innogration (Suzhou) Co., Ltd.

Typical performance

Figure 3: Efficiency and power gain as function of Pout

Figure 5: Network analyzer output S11/S21

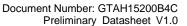
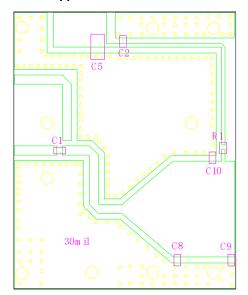



Figure 5: Picture of application board

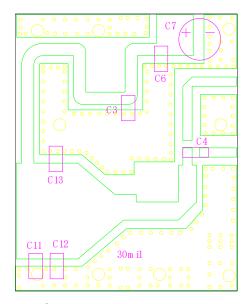
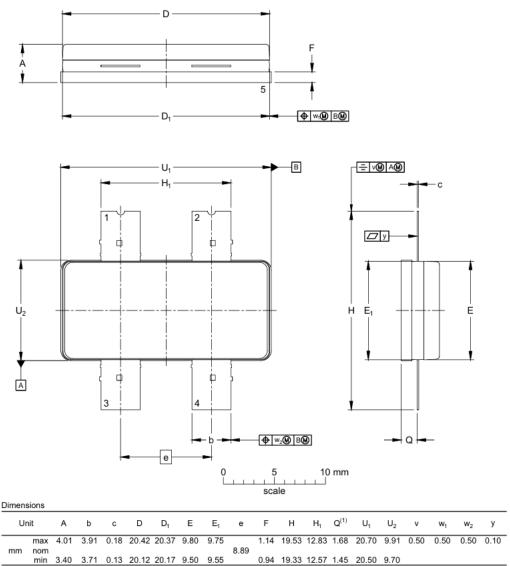



Table 4. Bill of materials of application board (PCB layout upon request)

Designator	Comment	Footprint	Quantity
C1	3.9F	0805	1
C2	30 pF	0805	1
C3, C4	30 pF	1210	2
C5, C6	10 uF/100V	1210	2
C7	470 uF/63V		1
R1	10 Ω	0603	1
C8, C10	6.8 pF	0805	2
C9	3.0 pF	0805	1
C11, C13	3.0 pF	1210	2
C12	1.0 pF	1210	1

Document Number: GTAH15200B4C Preliminary Datasheet V1.0

Earless Flanged Plastic Air Cavity Package; 4 leads

mm

Revision history

Table 4. Document revision history

Date	Revision	Datasheet Status
2024/8/13	V1.0	Preliminary Datasheet Creation

Application data based on: LSM-24-26

Notice

Specifications are subject to change without notice. Innogration believes the information within the data sheet to be reliable. Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose.

"Typical" parameter is the average values expected by Innogration in quantities and are provided for information purposes only. It can and do vary in different applications and related performance can vary over time. All parameters should be validated by customer's technical experts for each application.

Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility.

For any concerns or questions related to terms or conditions, please check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.