
Gallium Nitride 28V 80W, C band RF Power Transistor

Description

The GTAH50080L4 is a 80W internally matched, GaN HEMT, designed from 3 to 5GHz, especially 5G NR or LTE application, as well as either Pulse or CW application

There is no guarantee of performance when this part is used in applications designed Outside of these frequencies.

	•					
Freq(MHz)	Pin(dBm)	Pout(dBm)	Pout(W)	IDS(A)	Gain(dB)	Eff(%)
3000	39	48.04	63.68	4.42	9.04	51.45
3100	39	48.73	74.64	5.02	9.73	53.11
3200	39	48.67	73.62	4.93	9.67	53.33
3300	39	48.7	74.13	5.09	9.7	52.01
3400	39	48.85	76.74	5.19	9.85	52.80
3500	39	48.78	75.51	5.65	9.78	47.73
3600	39	48.96	78.70	5.56	9.96	50.56
3700	39	48.91	77.80	5.49	9.91	50.61
3800	39	48.71	74.30	5.35	9.71	49.60
3900	39	48.58	72.11	5.35	9.58	48.14
4000	39	48.69	73.96	5.59	9.69	47.25
4100	39	48.64	73.11	5.48	9.64	47.65
4200	39	48.58	72.11	5.47	9.58	47.08
4300	39	48.48	70.47	5.32	9.48	47.31
4400	39	48.44	69.82	5.16	9.44	48.33
4500	39	48.24	66.68	5.09	9.24	46.79
4600	39	48.27	67.14	5.19	9.27	46.20
4700	39	48.31	67.76	5.25	9.31	46.10
4800	39	48.35	68.39	5.35	9.35	45.65
4900	39	48.39	69.02	5.46	9.39	45.15

Recommended driver: G2MAH3050-10C9

Applications and Features

- Suitable for wireless communication infrastructure, wideband amplifier, EMC testing, ISM etc.
- High Efficiency and Linear Gain Operations
- Thermally Enhanced Industry Standard Package
- High Reliability Metallization Process
- Excellent thermal Stability and Excellent Ruggedness
- Compliant to Restriction of Hazardous Substances (RoHS) Directive 2002/95/EC

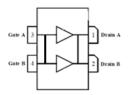
GTAH50080L4

GTAH50080L4 GaN TRANSISTOR

Document Number: GTAH50080L4 Preliminary Datasheet V1.0

Important Note: Proper Biasing Sequence for GaN HEMT Transistors

Turning the device ON


- 1. Set VGS to the pinch--off (VP) voltage, typically -5 V
- 2. Turn on VDS to nominal supply voltage (28V)
- 3. Increase VGS until IDS current is attained
- 4. Apply RF input power to desired level

Turning the device OFF

- 1. Turn RF power off
- 2. Reduce VGS down to VP, typically -5 V
- 3. Reduce VDS down to 0 V
- 4. Turn off VGS

Figure 1: Pin Connection definition

Transparent top view (Backside grounding for source)

*Notice: Both leads at input and output are internally connected, device is only usable as single ended

Table 1. Maximum Ratings

acio ii maximum radingo				
Rating	Symbol	Value	Unit	
DrainSource Voltage	V _{DSS}	150	Vdc	
GateSource Voltage	V _{GS}	-10,+2	Vdc	
Operating Voltage	V _{DD}	36	Vdc	
Maximum Forward Gate Current @ Tc = 25°C	Igmax	21.6	mA	
Storage Temperature Range	Tstg	-65 to +150	°C	
Case Operating Temperature	Tc	+150	°C	
Operating Junction Temperature(See note 1)	T,	+225	°C	
Total Device Power Dissipation (Derated above 25°C, see note 2)	Pdiss	120	W	

Note: 1. Continuous operation at maximum junction temperature will affect MTTF

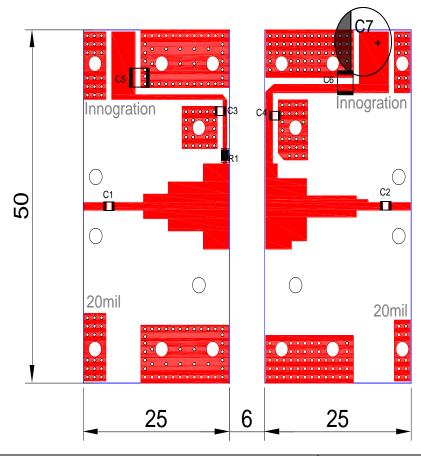
Table 2. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction to Case	Do 10	1.05	C/W
T _C = 85°C, RF CW operation, Pout=80W, 5GHz	RөJC	1.05	C/ VV

Table 3. Electrical Characteristics ($T_C = 25^{\circ}C$ unless otherwise noted)

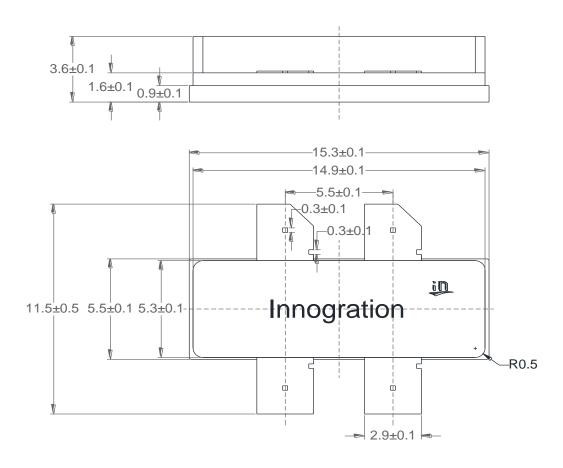
DC Characteristics

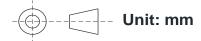
Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Drain-Source Breakdown Voltage	V _{GS} =-8V; I _{DS} =21.6mA	V_{DSS}	150			V
Gate Threshold Voltage	V _{DS} = 28V, I _D =21.6mA	V _{GS} (th)	-4		-2	V
Gate Quiescent Voltage	V _{DS} =28V, I _{DS} =40mA, Measured in Functional Test	V _{GS(Q)}		-2.6		V


^{2.} Bias Conditions should also satisfy the following expression: Pdiss < (Tj - Tc) / RJC and Tc = Tcase

GTAH50080L4 GaN TRANSISTOR

Typical performance


3-4.9GHz


Figure 2: Picture and Bill of materials of wide band application circuit (Layout Gerber file upon request)

Component	Description	Suggestion
C7	470uF/63V	-
C5,C6	10uF/1210	-
		BEIJING YUANLU HONGYUAN
C1,C2, C3,C4	6.2pF/ MQ300805	ELECTRONIC TECHNOLOGY CO.,
		LTD.
R1	Chip Resistor ,10Ω/0805	-
PCB	20mil / Rogers 4350 20mil	-

Earless Flanged Ceramic Package; 4 leads

Revision history

Table 4. Document revision history

Date	Revision	Datasheet Status
2024/9/2	V1.0	Production Datasheet Creation

Application data based on YHG-24-16

Notice

Specifications are subject to change without notice. Innogration believes the information within the data sheet to be reliable. Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose.

"Typical" parameter is the average values expected by Innogration in quantities and are provided for information purposes only. It can and do vary in different applications and related performance can vary over time. All parameters should be validated by customer's technical experts for each application.

Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility.

For any concerns or questions related to terms or conditions, please check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.