GaN 28V, 240W, 3.3-3.6GHz RF Power Transistor

Description

The GTAH36240BY4V is a 240-watt, internally matched GaN HEMT, designed for 5G cellular applications with frequencies from 3.3-3.6GHz, enabled by wide band VBW capability to support IBW ≥ 200MHz.

It can be configured as asymmetrical Doherty for 4G or 5G application, delivering 25 to 30W average power, according to normal 8.5 to 9.5dB back off.

There is no guarantee of performance when this part is used in applications designed Outside of these frequencies.

Typical Doherty Pulsed CW and 1C W--CDMA Characterization Performance:

VDD = 28 Vdc, IDQA = 230 mA, VGSB = -4.2Vdc,

(1)Pulsed condition: 100us and 10%,

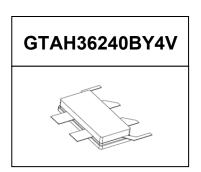
Г.	D1 1D	D1 1D	D1 ID	D1 1D	D9 1D	D0 1D	D9 1D
Freq	P1dB	P1dB	P1dB	P1dB	P3dB	P3dB	P3dB
(MHz)	(dBm)	(W)	Eff(%)	Gain(dB)	(dBm)	(W)	Eff(%)
3300	51.86	153.6	52.9	10.21	53.43	220.5	53.6
3400	51.55	142.9	54.8	10.48	53. 56	227.2	57. 7
3500	52. 23	167.2	56. 1	10.16	53.61	229.6	59.0
3600	52. 57	180.7	57.6	10.46	53.45	221.4	60.1

(2)1C WCDMA; Signal PAR = 10 dB @ 0.01% Probability on CCDF.

Freq	Pout	CCDF	ACPR	Gain	Efficiency
(MHz)	(dBm)	(dB)	(dBc)	(dB)	(%)
3300	44. 51	8.76	-31.9	10.8	41.6
3400	44. 46	9.08	-33.7	10.9	43.5
3500	44. 51	8.88	-38.4	10.8	43.8
3600	44. 50	9.37	-33.8	10.9	42. 4

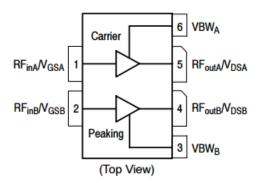
Applications

- Asymmetrical Doherty amplifier within N78 5G band and B42 4G band
- S band power amplifier


Important Note: Proper Biasing Sequence for GaN HEMT Transistors

Turning the device ON

- 1. Set VGS to the pinch—off (VP) voltage, typically –5 V
- 2. Turn on VDS to nominal supply voltage
- 3. Increase VGS until IDS current is attained
- 4. Apply RF input power to desired level


Turning the device OFF

- 1. Turn RF power off
- 2. Reduce VGS down to VP, typically -5 V
- 3. Reduce VDS down to 0 V
- 4. Turn off VGS

Document Number: GTAH36240BY4V Preliminary Datasheet V1.0

Figure 1: Pin Connection definition

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
Drain—Source Voltage	V _{DSS}	+150	Vdc
Gate—Source Voltage	V _{GS}	-8 to +0.5	Vdc
Operating Voltage	V_{DD}	32	Vdc
Maximum gate current	Igs	60	mA
Storage Temperature Range	Tstg	-65 to +150	°C
Case Operating Temperature	T _C	+150	°C
Operating Junction Temperature	TJ	+225	°C

Table 2. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction to Case by FEA	Do 10	0.75	°C /W
T _C = 85°C, Pout=25W, 3.6GHz Doherty application board	Rejc	0.75	-0/00

Table 3. Electrical Characteristics (TA = 25℃ unless otherwise noted)

DC Characteristics (main and peak path, measured on wafer prior to packaging)

Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Drain-Source Breakdown Voltage	VGS=-8V; IDS=30mA	V _{DSS}		200		V
Gate Threshold Voltage	VDS =10V, ID = 30mA	$V_{GS(th)}$	-4		-2	V
Gate Quiescent Voltage	VDS =50V, IDS=230Ma, Measured in Functional Test	$V_{GS(Q)}$		-2.6		V

Ruggedness Characteristics

Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Load mismatch capability	3.6GHz, Pout=25W WCDMA 1					
	Carrier in Doherty circuit	VSWR		10:1		
	All phase,	VOVK		10.1		
	No device damages					

Figure 3: Efficiency and power gain as function of Pout (3.3-3.6GHz Doherty)

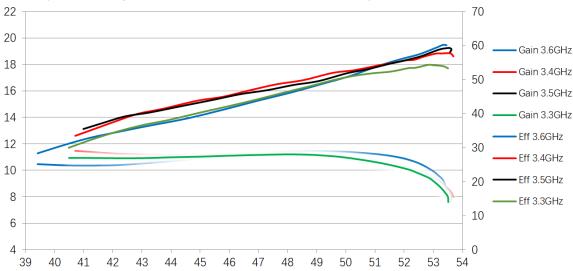
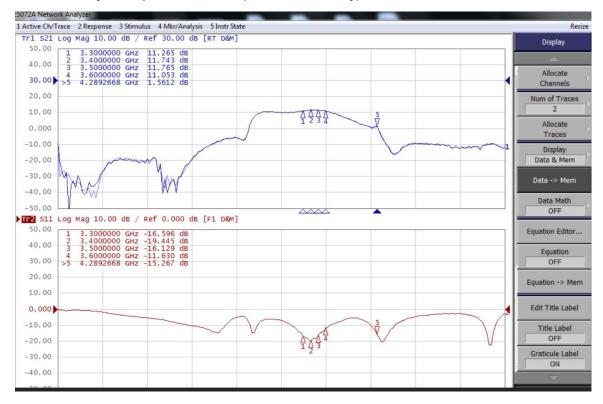
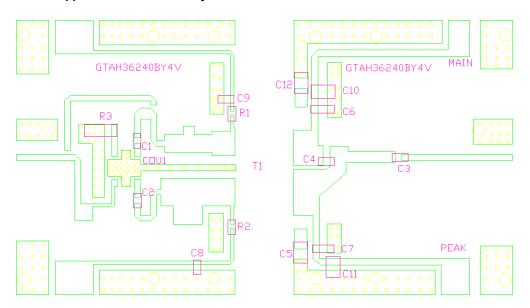
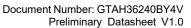
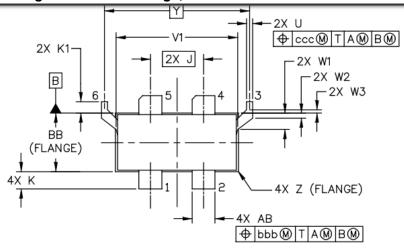



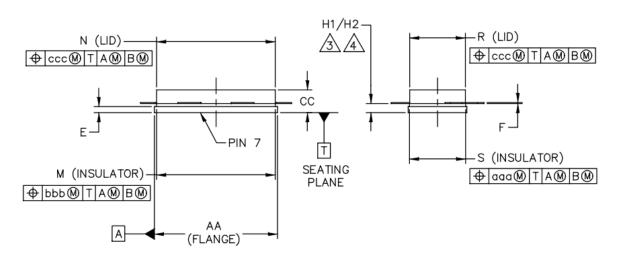
Figure 4: Network analyzer output, S11 and S21 (3.3-3.6GHz Doherty)

Document Number: GTAH36240BY4V Preliminary Datasheet V1.0

Figure 5: Picture of application board Doherty circuit for 3.3-3.6GHz


Table 4. Bill of materials of application board (PCB layout upon request, RO4350B 20mils)


Part	Quantity	Description	Part Number	Manufacture
C1,C2, C3,C6,	7	8.2pFHigh Q	251SHS8R2BSE	TEMEX
C7,C8,C9		Capacitor		
C4	1	1.1pFHigh Q	251SHF1R1BSE	TEMEX
		Capacitor		
C10,C11,C12,C5	4	10uF MLCC	GRM32EC72A106ME0	Murata
			5	
R1,R2	2	10 Ω Power	ESR03EZPF10R0	ROHM
		Resistor		
`R3	1	51 Ω Power	RFR50-20CT0421B	YT
		Resistor		
COUT1	1	3 dB Bridge	XC3500P-03S	ANAREN
T1	1	240W GaN	GTAH36240BY4V	Innogration
		Dual Transistor		

Earless Flanged Ceramic Package; 6 leads- BY4V

	IN	CH	MILLIN	METER		INCH		MILLIM	ETER
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX
AA	.805	.815	20.45	20.70	R	.365	.375	9.27	9.53
BB	.380	.390	9.65	9.91	S	.365	.375	9.27	9.53
CC	.125	.170	3.18	4.32	U	.035	.045	0.89	1.14
Ε	.035	.045	0.89	1.14	V1	.795	.805	20.19	20.45
F	.004	.007	0.10	0.18	W1	.0975	.1175	2.48	2.98
H1	.057	.067	1.45	1.70	W2	.0225	.0425	0.57	1.08
H2	.054	.070	1.37	1.78	W3	.0125	.0325	0.32	0.83
J	.350	BSC	8.89 BSC		Y	.956	BSC	24.28	B BSC
K	.0995	.1295	2.53	3.29	Z	R.000	R.040	R0.00	R1.02
K1	.070	.090	1.78	2.29	AB	.145	.155	3.68	3.94
М	.774	.786	19.66	19.96	aaa	.005		0.1	3
Ν	.772	.788	19.61	20.02	bbb	.010		0.2	25
					ccc	.015		0.3	88

Document Number: GTAH36240BY4V Preliminary Datasheet V1.0

Revision history

Table 4. Document revision history

Date	Revision	Datasheet Status
2025/10/10	V1.0	Preliminary Datasheet Creation

Application data based on LWH-25-39

Notice

Specifications are subject to change without notice. Innogration believes the information within the data sheet to be reliable. Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose.

"Typical" parameter is the average values expected by Innogration in quantities and are provided for information purposes only. It can and do vary in different applications and related performance can vary over time. All parameters should be validated by customer's technical experts for each application.

Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility.

For any concerns or questions related to terms or conditions, please check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.