Document Number: GMAH0095-4 Production Datasheet V1.0

DC-9.5GHz, 2Wx2, 28V GaN Fully matched PA Module

Description

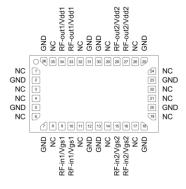
The GMAH0095-4 is a dual path 2W*2 ,single stage integrated Power Amplifier Module, designed for broad band applications, with frequencies from DC to 9.5GHz. The module is 50 Ω input/output matched and requires minimal external components.

It is to implement 2xGMAH0095-2 into the same package to minimize the design for external combination

The module implements distributed power amplifier in form of multi chips, housed in cost effective plastic open cavity package, offers a much lower cost than traditional MMIC solutions.

Vds=28V, Idq=30mA, CW in typical 1-9GHz combination circuit

Parameter	1 GHz	2GHz	4GHz	6GHz	7GHz	8GHz	9GHz	Units
Linear Gain	8.4	10.5	13.1	11.5	10.4	9.5	9.2	dB
Pout@Pin=28dBm	3. 1	4. 7	7.0	5. 7	4. 4	3.6	3. 1	W
Gain@Pin=28dBm	7.0	8. 7	10.4	9.6	8.4	7. 5	7.0	dB
Eff@ Pin=28dBm	24	31	46	35	27	23	21	%


Product Features

- Operating Frequency Range: DC-9.5GHz and typical combination within 1-9GHz
- Operating Drain Voltage: +28 V
- 50 Ω Input/Output
- Psat: ≥35 dBm
- Small signal gain:>8dB, Power gain:>7dB
- Minimum efficiency:>20%
- 6x10 mm Surface Mount Package
- Compliant to Restriction of Hazardous Substances (RoHS) Directive 2002/95/EC

Applications

- Ultra Broadband Amplifiers
- Fiber Drivers
- Test Instrumentation
- EMC Amplifier Drivers
- 2-way Radios

Pin Configuration and Description

Top View

Innogration (Suzhou) Co., Ltd.

Document Number: GMAH0095-4 Production Datasheet V1.0

Pin No.	Symbol	Description		
33,34 RFout1/Vdd1		Transistor 1, Drain Bias & RF Output		
9,10 RFin1/Vgs1		Transistor 1, RF Input &Gate Bias		
27,28, RFout2/Vdd2		Transistor 2, Drain Bias & RF Output		
15,16 RFin2/Vgs2		Transistor 2, RF Input &Gate Bias		
Others	NC	No connection		
2,5,7,12, 13,18,20,23,25, 30, 31,36 Package Base GND		DC/RF Ground. Must be soldered to EVB ground plane over array of vias for thermal and RF performance. Solder voids under Pkg Base will result in excessive junction temperatures causing permanent damage.		

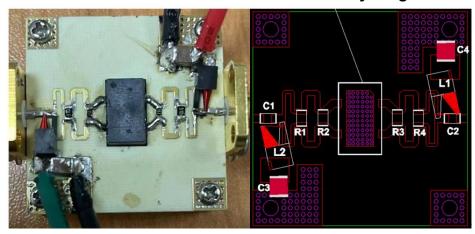
Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
DrainSource Voltage	V _{DSS}	150	Vdc
GateSource Voltage	V _{GS}	-10 to +2	Vdc
Operating Voltage	V _{DD}	+36	Vdc
Storage Temperature Range	Tstg	-65 to +150	°C
Case Operating Temperature	Tc	+150	°C
Operating Junction Temperature	T _J	+225	°C

Table 2. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction to Case	Rejc	4	°C/M
T _C = 87°C, T _J =175°C, DC test	RejC	4	°C/W

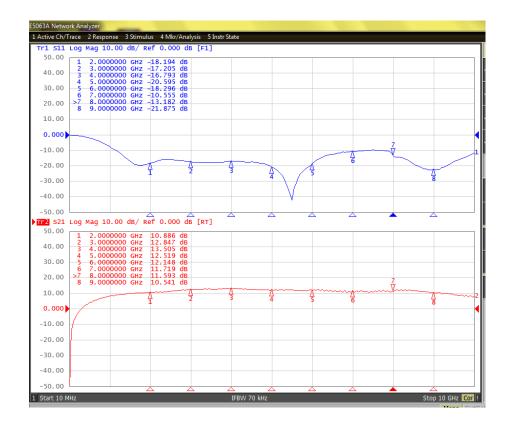
Table 3. Electrical Characteristics in typical 1-9GHz


Parameter	Condition	Min	Тур	Max	Unit
Frequency Range		1000		9500	MHz
Power Gain @ Psat		7			dB
P _{SAT}		35			dBm
Drain Efficiency @ P _{SAT}		20			%
Unless otherwise noted: TA = 25°C, V _{DD} =28 V, Pulse Width=100 us, Duty cycle=10%					

Load Mismatch of per Section (On Test Fixture, 50 ohm system): $V_{DD} = 28 \text{ V}$, $I_{DQ} = 0 \text{ mA}$, f = 3.5 GHz

VSWR 10:1 at Psat pulse CW Output Power	No Device Degradation
VOVIT 10.1 at 1 sat paise OVV Output 1 ower	140 Device Degradation

Reference Circuit of Test Fixture Assembly Diagram



←	↩	Part·NO. <i>←</i>	Vendor⊲	
C3,C4←	10uF⋅100V⋅chip⋅Capacitor⊲	C5750X7S2A106M230KB	TDK₽	
C1,C2←	3.9pF⋅Chip⋅Capacitor↩	<□	↩	
L1,L2←	1.47·uH·694mA·Inductor⊲	506WLSN1RR47KT694T	Kyocera⋅AVX⊲	
R1,R4←	50 Ohm Resistor⊲	لع	4	
R2,R3←	150·Ohm·Resistor	← ←	↩	
PCB↩	RO4350B,20mil,er=3.48←	←□	7	

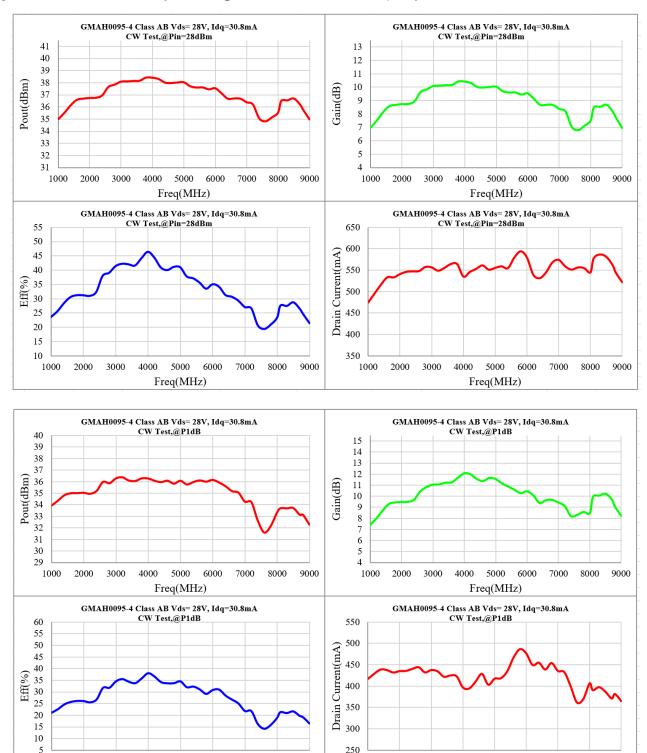
Figure 1. Test Circuit Component Layout

TYPICAL CHARACTERISTICS

Figure 2. Network analyzer output S11/S21 (Pin=0dBm)

2000

3000


5000

Freq(MHz)

Innogration (Suzhou) Co., Ltd.

Document Number: GMAH0095-4 Production Datasheet V1.0

Figure. Power Gain and, efficiency and Pout @Pin=28dBm ,and P3dB vs. Frequency

8000

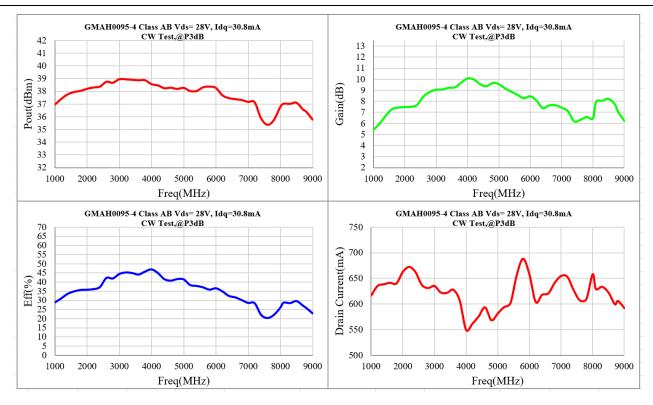
1000

2000

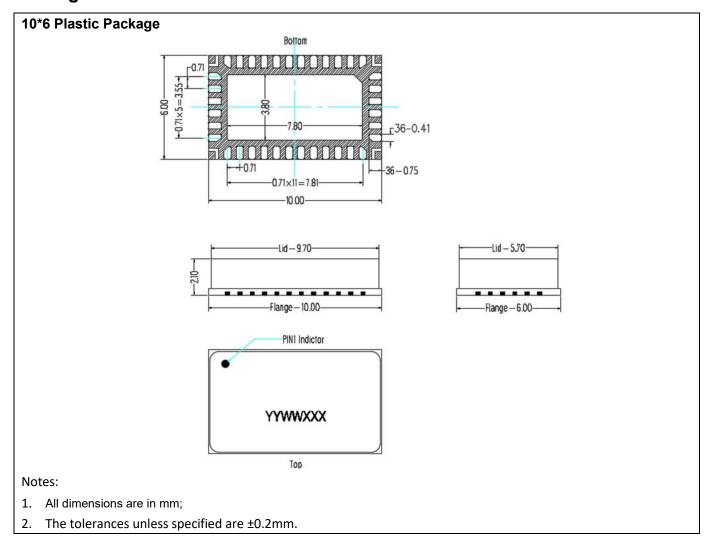
3000

5000

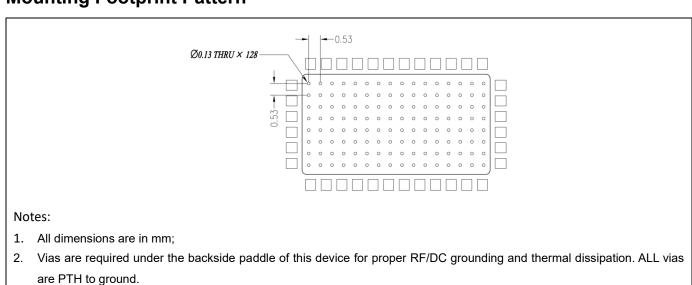
Freq(MHz)


7000

8000


Innogration (Suzhou) Co., Ltd.

Document Number: GMAH0095-4 Production Datasheet V1.0



Document Number: GMAH0095-4 Production Datasheet V1.0

Package Dimensions

Mounting Footprint Pattern

Document Number: GMAH0095-4 Production Datasheet V1.0

Revision history

Table 6. Document revision history

Date	Revision	Datasheet Status
2022/11/4	Rev 1.0	Production Datasheet

Application data based on ZHH-22-23

Disclaimers

Specifications are subject to change without notice. Innogration believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Innogration for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Innogration . Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Innogration in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility. For any concerns or questions related to terms or conditions, pls check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.