
2200W, 50V High Power RF LDMOS FETs

Description

The MQ012K2VPX is a 2200W capable, highly rugged, unmatched LDMOS FET, designed for commercial and industrial applications with frequencies HF to 150MHz

It is featured for industry leading high power and high ruggedness, suitable for Industrial, Scientific and Medical application, as well as HF communication, VHF TV and Aerospace applications.

Application data at multiple frequencies

Freq(MHz)	Voltage(V)/Idq(mA)	Signal type	Pin(dBm)	Pout(W)	Power Gain(dB)	Eff(%)
108	50/200	CW	47.5	2333	16.2	82

Features

- High breakdown voltage enable possible class E operation at lower Vdd
- High Efficiency and Linear Gain Operations
- On chip RC network enable high stability and ruggedness
- Integrated ESD Protection
- Large Positive and Negative Gate/Source Voltage Range for Improved Class C Operation
- · Excellent thermal stability, low HCI drift
- Compliant to Restriction of Hazardous Substances (RoHS) Directive 2002/95/EC

Table 1. Maximum Ratings

<u> </u>			
Rating	Symbol	Value	Unit
Drain—Source Voltage	V _{DSS}	140	Vdc
Gate—Source Voltage	V_{GS}	-10 to +10	Vdc
Operating Voltage	V_{DD}	+55	Vdc
Storage Temperature Range	Tstg	-65 to +150	°C
Case Operating Temperature	T _c	+150	°C
Operating Junction Temperature	T₃	+225	°C

Table 2. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction to Case ,Case Temperature	Rejc	0.09	°C/W
85°C, 2000W CW, 50 Vdc, IDQ = 240 mA	Reju	0.09	-C/VV
Transient thermal impedance from junction to case	Zth	0.013	°C/W
Tj = 150° C; tp = 100 us; Duty cycle = 20 %	ک لاا	0.013	-0/00

Table 3. ESD Protection Characteristics

Test Methodology	Class
Human Body Model (per JESD22—A114)	Class 2

Table 4. Electrical Characteristics (TA = 25 ℃ unless otherwise noted)

	Characteristic	Symbol	Min	Тур	Max	Unit	
DC Characteristics							
	Drain-Source Voltage	W		140		V	
	V _{GS} =0V, I _{DS} =1.0Ma	V _{(BR)DSS}		140		V	
	Zero Gate Voltage Drain Leakage Current	I _{DSS}			1	μА	

MQ012K2VPX LDMOS TRANSISTOR Document Number: MQ012K2VPX Preliminary Datasheet V1.0

		 	Tellillillary Dat	4011001 1 1.0	
$(V_{DS} = 50V, V_{GS} = 0 V)$					
Gate—Source Leakage Current			4	^	
$(V_{GS} = 10 \text{ V}, V_{DS} = 0 \text{ V})$	I _{GSS}	 	1	μА	
Gate Threshold Voltage	M. m.	2.54		1/	
$(V_{DS} = 50V, I_{D} = 600 \mu A)$	V _{GS} (th)	 2.54		V	
Gate Quiescent Voltage		3		\ /	
(V _{DD} = 50 V, I _D = 240 Ma, Measured in Functional Test)	$V_{GS(Q)}$	 3		V	
Drain source on state resistance	Dda(an)	400		0	
(V _{DS} = 0.1V, V _{GS} = 10 V) Each section side of device measured	Rds(on)	100		mΩ	
Common Source Input Capacitance	C _{ISS}	1170		pF	
(V _{GS} = 0V, V _{DS} =50 V, f = 1 MHz) Each section side of device					
measured					
Common Source Output Capacitance	C _{oss}	290		pF	
(V _{GS} = 0V, V _{DS} =50 V, f = 1 MHz) Each section side of device					
measured					
Common Source Feedback Capacitance	C _{RSS}	7.2		pF	
(V _{GS} = 0V, V _{DS} =50 V, f = 1 MHz) Each section side of device					
measured					

TYPICAL CHARACTERISTICS (108MHz)

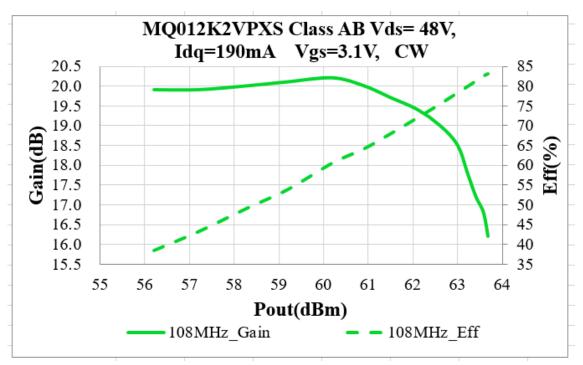
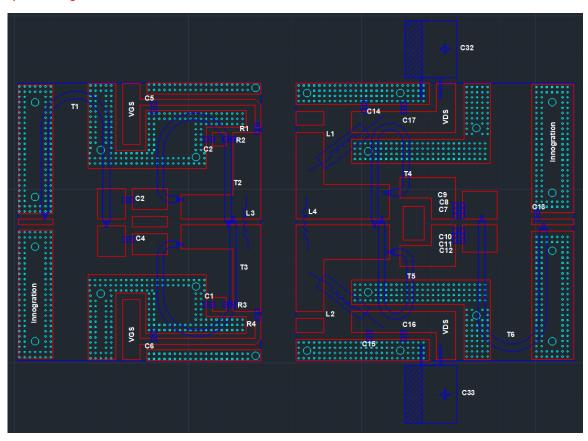
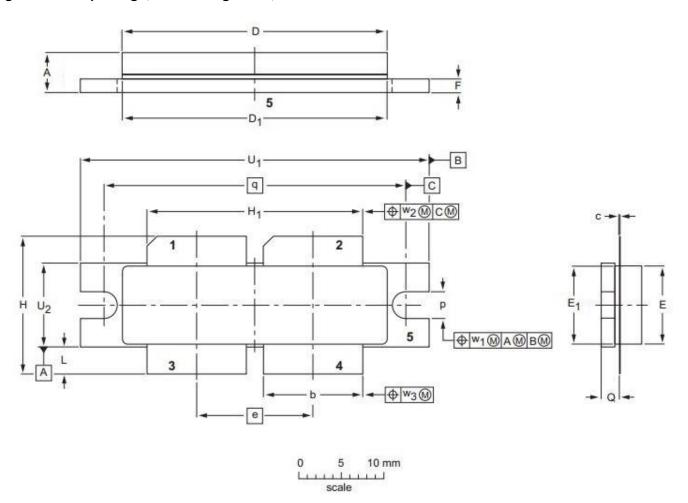



Figure 1: Efficiency and power gain as the function of Pout (Vds=50V, Idq=200mA)

MQ012K2VPX LDMOS TRANSISTOR Document Number: MQ012K2VPX Preliminary Datasheet V1.0

Reference Circuit of Test Fixture (108MHz Power Amplifier)

Note: This demo board is used for short time demonstration only, for long time CW operation, heat management for some components might needed


Table 5. Test Circuit Component Designations and Values

Component	Description	Suggestion
C1,C2	2.2uF / 1210	//
C5, C6, C14~C17	10uF / 1210	//
C2,C4	200pF / MQ101111	
C7~C12	560pF / MQ101111	
64.2	18pF / 300V	High Efficiency tuning
C13	23.3 pF / 300V	High Power tuning
C32, C33	4700uF,63V	Electrolytic Capacitor
R2, R3	10Ω, 1206	Chip Resistor
R1, R4	360Ω, 1206	Chip Resistor
L1, L2	2mm wire , 5mm inner diameter, 6Turns	DIY
L3	0.8mm wire , 5mm inner diameter, 1.3Turns	DIY
L4	2mm wire , 3mm inner diameter, 2Turns	DIY
T1	50 ohm 200mm	SFF-50-1.5
T2, T3	25 ohm 150mm	SFF-25-1.5
T4, T5	12.5 ohm 140mm	SFF-12.5-3
Т6	35 ohm 120mm	SFT-35-3
РСВ	0.762mm [0.030"] thick, er=3.	50, Rogers 4350B, 1 oz. copper

MQ012K2VPX LDMOS TRANSISTOR Document Number: MQ012K2VPX Preliminary Datasheet V1.0

Package Outline

Flanged ceramic package; 2 mounting holes; 4 leads (1, 2—DRAIN, 3, 4—GATE, 5—SOURCE)

UNIT	Α	b	С	D	D ₁	е	E	E ₁	F	Н	H ₁	L	р	q	q	U ₁	U_2	W ₁	W_2	W_2				
	4.7	11.81	0.18	31.55	31.52	40.70	9.50	9.53	1.75	17.12	25.53	3.48	3.30	2.26	05.50	41.28	10.29	0.05	0.54	0.05				
mm	4.2	11.56	0.10	30.94	30.96	13.72	9.30	9.27	1.50	16.10	25.27	2.97	3.05	2.01	35.56	41.02	41.02 1			41.02 10.03	10.03	0.25	0.51	0.25
	0.185	0.465	0.007	1.242	1.241	0.540	0.374	0.375	0.069	0.674	1.005	0.137	0.130	0.089	4 400	1.625	0.405	0.04	0.00	0.04				
inches	0.165	0.455	0.004	1.218	1.219	0.540	0.366	0.365	0.059	0.634	0.995	0.117	0.120	0.079	1.400	1.615	0.395	0.01	0.02	0.01				

OUTLINE		REFERENCE	EUROPEAN	ISSUE DATE	
VERSION	IEC	JEDEC	JEITA	PROJECTION	IOOOL DATE
PKG-D4E					03/12/2013

MQ012K2VPX LDMOS TRANSISTOR Document Number: MQ012K2VPX

Revision history

Table 5. Document revision history

Date	Revision	Datasheet Status
2025/11/25	Rev 1.0	Preliminary Datasheet

Application data based on SYX-25-52

Disclaimers

Specifications are subject to change without notice. Innogration believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Innogration for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Innogration . Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose."Typical" parameters are the average values expected by Innogration in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility. For any concerns or questions related to terms or conditions, pls check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.