ITEV01800B4C LDMOS TRANSISTOR

800W, 50V High Power RF LDMOS FETs

Description

The ITEV01800B4C is a 800-watt capable, high performance, unmatched LDMOS FET, designed for HF/VHF. It can be used for both CW and pulse application.

It is featured for high power and high ruggedness, low cost, suitable for ISM RF Energy application.

Typical Performance (On Innogration 108MHz fixture with device soldered):

ITEV01800B4C VGS=3.1V VDS=50V IDQ=200mA							
Signal	Signal Pout(dBm) Pout(W) Pin(dBm) Gain(dB) Eff(%) 2 nd /3 rd harmonic(dB)						
Pulsed CW(10%,100us)	59.6	906	41	18.6	84	1	
CW	59.3	843	41	18.3	82	-40/-21	

Features

- High Efficiency and Linear Gain Operations
- Integrated ESD Protection
- On chip RC network enable high stability and ruggedness
- Large Positive and Negative Gate/Source Voltage Range for Improved Class C Operation
- · Excellent thermal stability, low HCI drift
- Compliant to Restriction of Hazardous Substances (RoHS) Directive 2002/95/EC

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
DrainSource Voltage	V _{DSS}	135	Vdc
GateSource Voltage	V_{GS}	-7 to +10	Vdc
Operating Voltage	V_{DD}	+55	Vdc
Storage Temperature Range	Tstg	-65 to +150	°C
Case Operating Temperature	Tc	+150	°C
Operating Junction Temperature	TJ	+225	°C

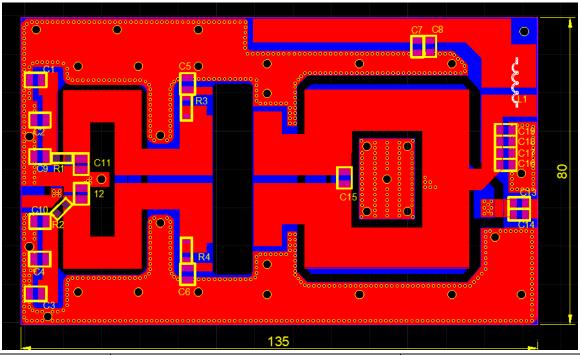
Table 2. Thermal Characteristics

Characteristic	Symbol	Value	Unit	
Thermal Resistance, Junction to Case ,Case Temperature	Do 10	0.2	°C/W	
80°C, 600W CW, 50 Vdc, IDQ = 200 mA	Rejc	0.2	-C/VV	
Transient thermal impedance from junction to case	7th	0.05	°C/W	
Tj = 150° C; tp = 100 us; Duty cycle = 10 %	Zth	0.05	-0/00	

Table 3. ESD Protection Characteristics

Test Methodology	Class
Human Body Model (per JESD22A114)	Class 2

Table 4. Electrical Characteristics (TA = 25 $^{\circ}$ C unless otherwise noted)


Characteristic		Symbol	Min	Тур	Max	Unit
	DC Characteristics (Per Side)					
	Drain-Source Voltage	V _{(BR)DSS}		135		V

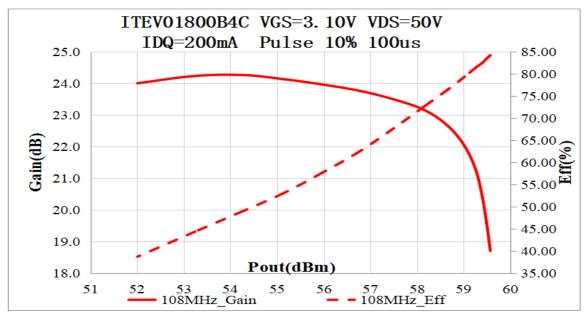
ITEV01800B4C LDMOS TRANSISTOR

Document Number: ITEV01800B4C Product Datasheet V1.0

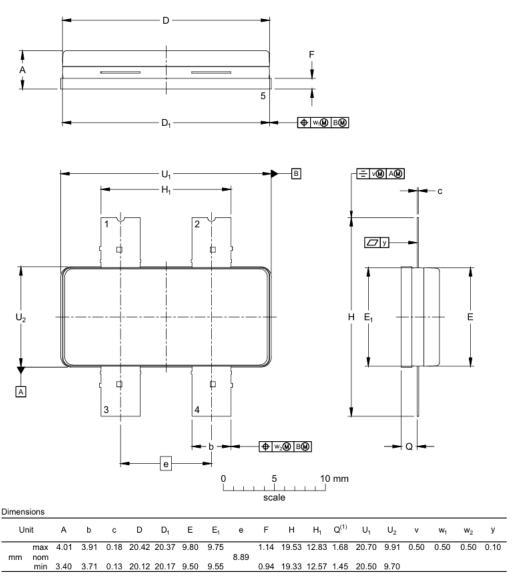
			i ioduci Dai	40001
V _{GS} =0, I _{DS} =18.0mA				
Zero Gate Voltage Drain Leakage Current			4	Δ.
$(V_{DS} = 50V, V_{GS} = 0 V)$	DSS		1	μА
Gate—Source Leakage Current			4	Δ.
$(V_{GS} = 10 \text{ V}, V_{DS} = 0 \text{ V})$	I _{GSS}		1	μА
Gate Threshold Voltage	V (II)	2.6		V
$(V_{DS} = 50V, I_D = 600 \mu A)$	V _{GS} (th)	2.0		V
Gate Quiescent Voltage	V	2.20		\/
(V _{DD} = 50 V, I _D = 200 mA, Measured in Functional Test)	$V_{GS(Q)}$	3.36		V
Common Source Input Capacitance	C _{ISS}	260		pF
$(V_{GS} = 0V, V_{DS} = 50 V, f = 1 MHz)$ Each section side of device				
measured				
Common Source Output Capacitance	Coss	65		pF
$(V_{GS} = 0V, V_{DS} = 50 V, f = 1 MHz)$ Each section side of device				
measured				
Common Source Feedback Capacitance	C _{RSS}	1.3		pF
$(V_{GS} = 0V, V_{DS} = 50 V, f = 1 MHz)$ Each section side of device				
measured				

Reference Circuit of Test Fixture (108MHz)

Component	Description	Suggestion
C1~C8	10uF/200V-1210	Ceramic multilayer capacitor
C9,C10	560pF	
C11,C12	510pF	
C13,C14,C16~C19	470pF	
C15	39pF	


ITEV01800B4C LDMOS TRANSISTOR

Document Number: ITEV01800B4C Product Datasheet V1.0


R1,R2	300 Ω/1206	Chip Resistor
R3,R4	51 Ω 2512	Chip Resistor
L1	1.5mm wire, 5mm inner diameter, 7turns	DIY

Typical performance

Figure 1: Power Gain, Efficiency as function of Pout

Earless Flanged Plastic Air Cavity Package; 4 leads

Revision history

Table 5. Document revision history

Date	Revision	Datasheet Status
2025/11/7	Rev 1.0	Preliminary Datasheet

Application data based on TC-25-38

Disclaimers

Specifications are subject to change without notice. Innogration believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Innogration for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Innogration . Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Innogration in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility. For any concerns or questions related to terms or conditions, pls check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.