

GaN HEMT 28V, 4W, X band RF Power Transistor

Description

The XTAH1A004C6 is a 4W GaN HEMT, designed for multiple applications, within 8-10GHz.

The transistor is available in a highly cost effective 10*6mm, surface mount, QFN package with

100% production test to ensure the quality and consistency.

It can be used in CW, Pulse and any other modulation modes.

There is no guarantee of performance when this part is used in applications designed outside of these frequencies.

- Typical 8-10GHz broadband performance with device soldered

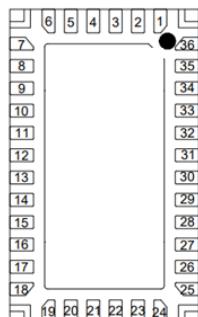
$V_{ds} = 28V$, $V_{gs} = -2.57V$, $I_{dq} = 15mA$					
CW					
Freq(MHz)	P-1(dBm)	P-1Gain(dB)	P-3(dBm)	P-3(W)	EFF (%)
8000	35.50	7.9	36.46	4.4	49.7
8500	34.74	8.6	36.16	4.1	39.8
9000	34.89	9.0	36.64	4.6	42.8
9500	35.18	8.0	36.92	4.9	45.3
10000	35.25	9.3	36.34	4.3	49.2

Applications

- X band power amplifier

Important Note: Proper Biasing Sequence for GaN HEMT Transistors

Turning the device ON


1. Set VGS to the pinch-off (VP) voltage, typically -5 V
2. Turn on VDS to nominal supply voltage
3. Increase VGS until IDS current is attained
4. Apply RF input power to desired level

Turning the device OFF

1. Turn RF power off
2. Reduce VGS down to VP, typically -5 V
3. Reduce VDS down to 0 V
4. Turn off VGS

Figure 1: Pin Connection definition

Transparent top view (Backside grounding for source)

Pin No.	Symbol	Description
8,9,10,11,	RF IN/Vgs	RF Input, Vgs bias
32,33,34,35	RF OUT/VDD	RFOutput, Drain bias
2,5,7,12,13,18,20,23,25,30,31,36, Package Base	GND	DC/RF Ground.
Rest Pins	NC	Not connected

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
Drain--Source Voltage	V_{DSS}	+150	Vdc
Gate--Source Voltage	V_{GS}	-8 to +0.5	Vdc
Operating Voltage	V_{DD}	36	Vdc
Maximum gate current	I_{GS}	1	mA
Storage Temperature Range	T_{STG}	-65 to +150	°C
Case Operating Temperature	T_C	+150	°C
Operating Junction Temperature	T_J	+225	°C

Table 2. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction to Case by FEA $T_C = 25^\circ\text{C}$, at $P_{diss}=5\text{W}$	$R_{\theta JC}$	16	°C /W

Table 3. Electrical Characteristics (TA = 25°C unless otherwise noted)

DC Characteristics (main path, measured on wafer prior to packaging)

Characteristic	Conditions	Symbol	Min	Typ	Max	Unit
Drain-Source Breakdown Voltage	$V_{GS}=-8\text{V}$; $I_{DS}=1\text{mA}$	V_{DSS}		150		V
Gate Threshold Voltage	$V_{DS} = 10\text{V}$, $I_D = 1\text{mA}$	$V_{GS(th)}$	-4		-2	V
Gate Quiescent Voltage	$V_{DS} = 28\text{V}$, $I_{DS}=20\text{mA}$, Measured in Functional Test	$V_{GS(Q)}$		-2.57		V

Typical performance

Figure 2: Network analyzer output S11/S21

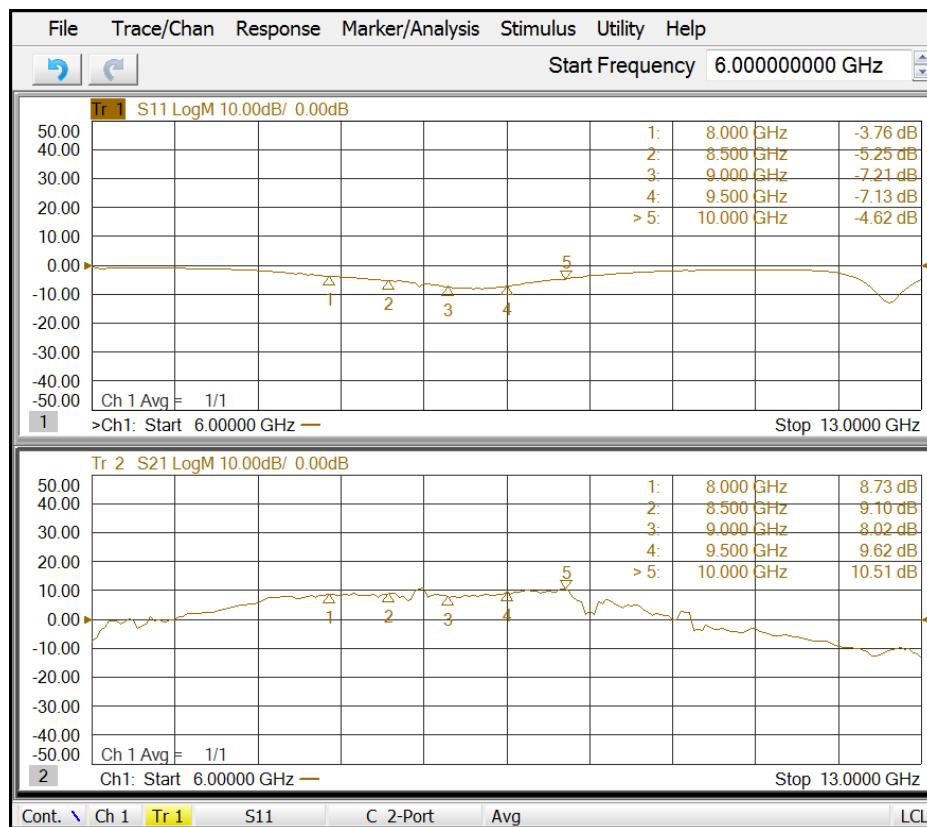


Figure 3: Power gain, Efficiency as function of Pout under Vds=28V, Idq=20mA,20us 15%

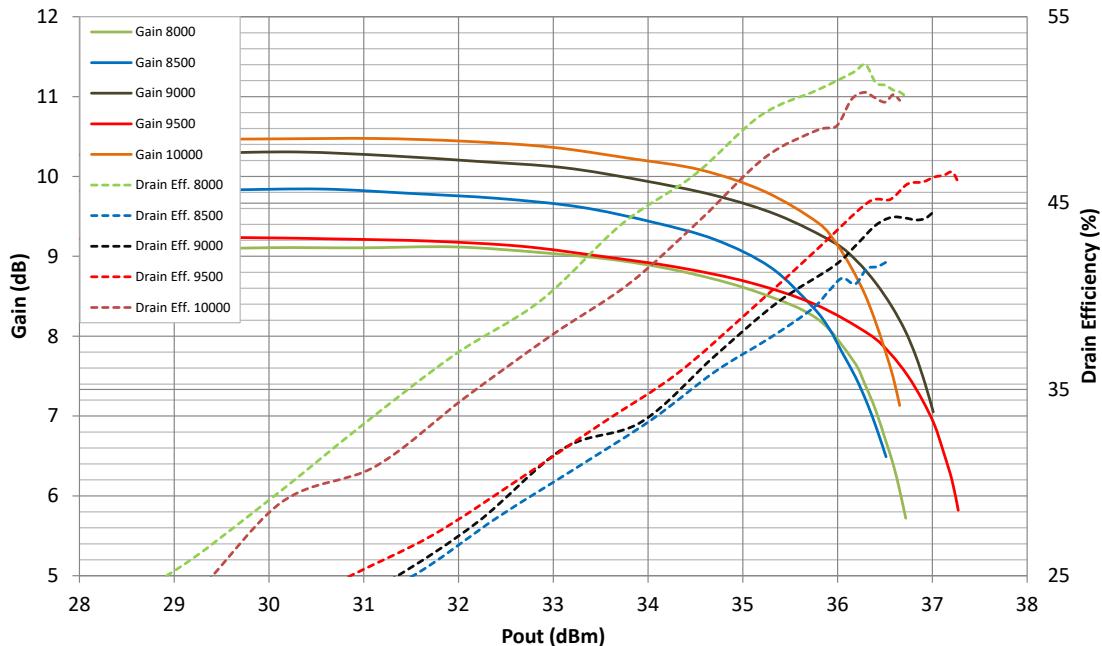


Figure 4: Picture of application board

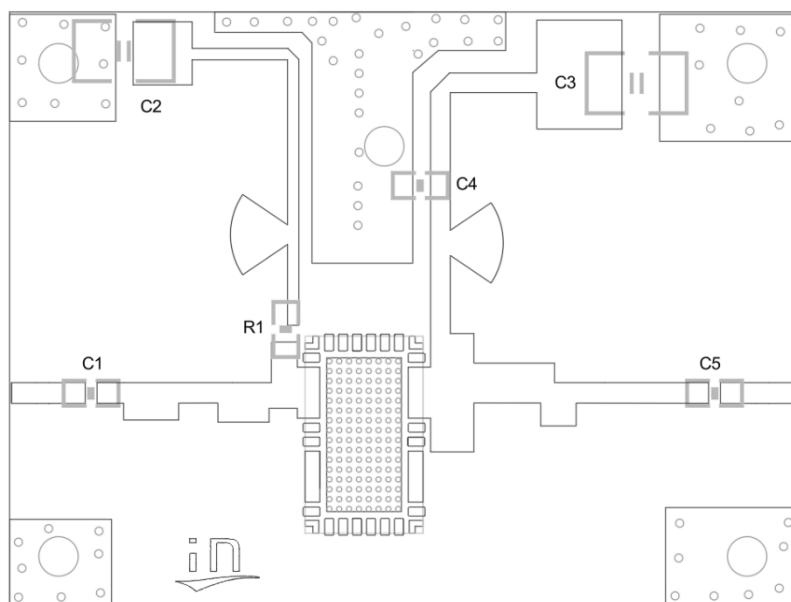
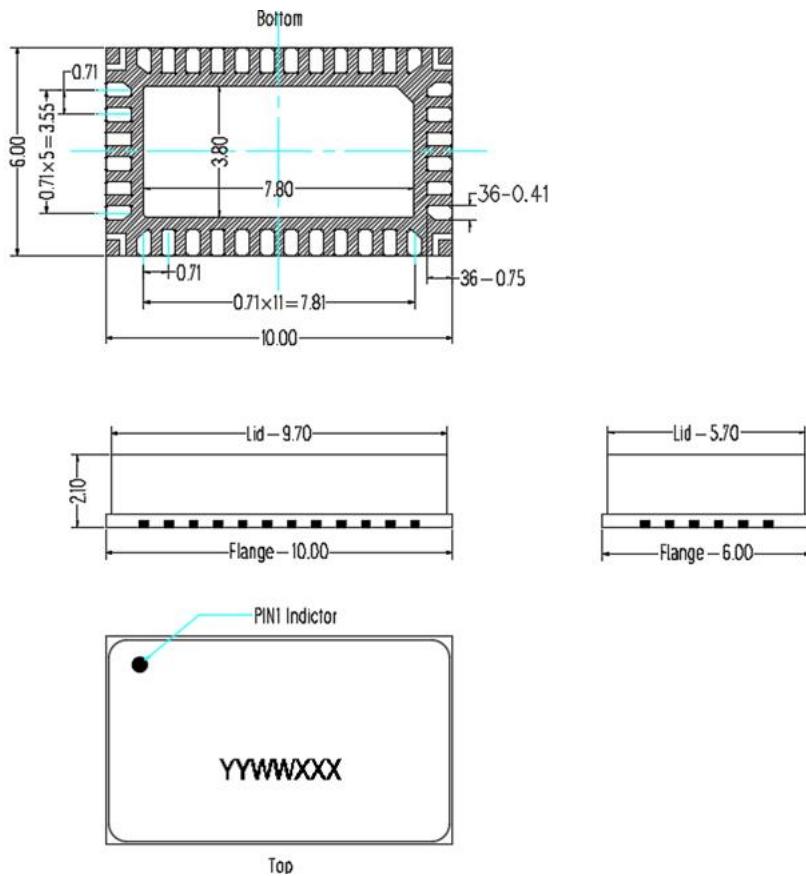



Table 4. Bill of materials of application board (PCB layout upon request, RO4350B 20mils)

Component	Value	Description
U1	XTAH1A004C6	PA (10*6mm)
C1、C5	1.0pF	0603
C2、C3	10uF	TDK1206
C4	1.8Pf	0603
R1	10 Ω	0603

10*6 Plastic Package

Notes:

1. All dimensions are in mm;
2. The tolerances unless specified are ± 0.2 mm.

Revision history

Table 4. Document revision history

Date	Revision	Datasheet Status
2025/12/10	V1.0	Preliminary Datasheet Creation

Application data based on: HJ-25-22

Notice

Specifications are subject to change without notice. Innogration believes the information within the data sheet to be reliable. Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose.

"Typical" parameter is the average values expected by Innogration in quantities and are provided for information purposes only. It can and do vary in different applications and related performance can vary over time. All parameters should be validated by customer's technical experts for each application.

Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility.

For any concerns or questions related to terms or conditions, please check with Innogration and authorized distributors
Copyright © by Innogration (Suzhou) Co.,Ltd.