Gallium Nitride 28V 160W, 3GHz RF Power Transistor

Description

The XTAH30160L4 is a 160W internally matched, GaN HEMT, designed for multiple applications, up to 3GHz

There is no guarantee of performance when this part is used in applications designed Outside of these frequencies.

In its typical wideband application, it can deliver 120W CW at 28V, and 140W at 32V across the full band of 0.5-3.0GHz.

XTAH30160L4

Typical **cw** performance (on 0.5-3.0GHz fixture with device soldered):

Vds=28V, Idq=300mA

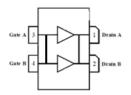
	V43-20V, 144-300111A					
Freq(GHz)	Pin(dBm)	Psat(dBm)	Psat(W)	Ids(A)	Gain(dB)	Eff(%)
0.5	35.44	51.44	139.32	8.81	16	56.48
0.6	37.22	51.82	152.05	8.36	14.6	64.96
0.7	38.94	51.84	152.76	7.66	12.9	71.22
0.8	37.63	51.33	135.83	6.89	13.7	70.41
0.9	40.72	51.08	128.23	6.91	10.36	66.28
1.0	39.94	51.56	143.22	7.7	11.62	66.43
1.1	40.1	51.42	138.68	8.23	11.32	60.18
1.2	39	51.52	141.91	8.01	12.52	63.27
1.3	40.84	51.17	130.92	7.48	10.33	62.51
1.4	40.4	50.83	121.06	6.77	10.43	63.86
1.5	40.9	51.28	134.28	7.62	10.38	62.93
1.6	40.08	51	125.89	8.06	10.92	55.78
1.7	40.03	51.15	130.32	8.97	11.12	51.89
1.8	39.08	51.54	142.56	9.58	12.46	53.15
1.9	39.16	52	158.49	10.36	12.84	54.64
2.0	39.78	52.34	171.40	10.29	12.56	59.49
2.1	40.05	51.11	129.12	8.19	11.06	56.31
2.2	41.11	50.91	123.31	8.25	9.8	53.38
2.3	40.98	50.9	123.03	9.04	9.92	48.60
2.4	41.48	51.48	140.60	10.33	10	48.61
2.5	41.15	51.62	145.21	10.36	10.47	50.06
2.6	40.78	51.63	145.55	10.43	10.85	49.84
2.7	40.88	51.73	148.94	10.77	10.85	49.39
2.8	40.6	51.9	154.88	10.74	11.3	51.50
2.9	39.8	51.76	149.97	9.87	11.96	54.27
3.0	40.29	51.09	128.53	8.4	10.8	54.65

Applications and Features

- Suitable for wireless communication infrastructure, wideband amplifier, EMC testing, ISM etc.
- High Efficiency and Linear Gain Operations
- Thermally Enhanced Industry Standard Package
- High Reliability Metallization Process
- Excellent thermal Stability and Excellent Ruggedness
- Compliant to Restriction of Hazardous Substances (RoHS) Directive 2002/95/EC

Important Note: Proper Biasing Sequence for GaN HEMT Transistors

Turning the device ON


- 1. Set VGS to the pinch--off (VP) voltage, typically -5 V
- 2. Turn on VDS to nominal supply voltage (28V)
- 3. Increase VGS until IDS current is attained
- 4. Apply RF input power to desired level

Turning the device OFF

- 1. Turn RF power off
- 2. Reduce VGS down to VP, typically -5 V
- 3. Reduce VDS down to 0 V
- 4. Turn off VGS

Figure 1: Pin Connection definition

Transparent top view (Backside grounding for source)

*Notice: Both leads at input and output are internally connected, device is only usable as single ended

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit	
DrainSource Voltage	V _{DSS}	150	Vdc	
GateSource Voltage	V _{GS}	-10,+2	Vdc	
Operating Voltage	V _{DD}	32	Vdc	
Maximum Forward Gate Current @ Tc = 25°C	Igmax	43.6	mA	
Storage Temperature Range	Tstg	-65 to +150	°C	
Case Operating Temperature	Tc	+150	°C	
Operating Junction Temperature(See note 1)	T₃	+225	°C	
Total Device Power Dissipation (Derated above 25°C, see note 2)	Pdiss	230	W	

Note: 1. Continuous operation at maximum junction temperature will affect MTTF

Table 2. Thermal Characteristics

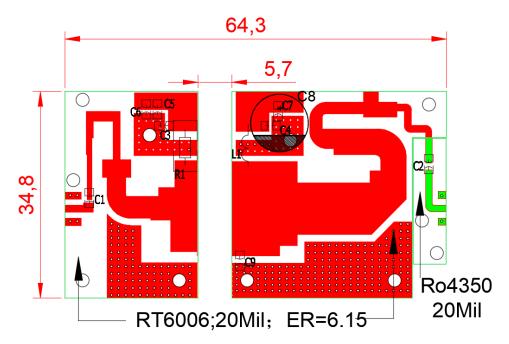
Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction to Case	Rелс	0.85	C/W
T _C = 85°C, RF CW operation, Pout=160W, 3GHz		0.85	

Table 3. Electrical Characteristics (T_C = 25 °C unless otherwise noted)

DC Characteristics

Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Drain-Source Breakdown Voltage V _{GS} =-8V; I _{DS} =43.6mA		V_{DSS}	150			V
Gate Threshold Voltage	V _{DS} = 28V, I _D =43.6mA	V _{GS} (th)	-4		-2	V
Gate Quiescent Voltage	V _{DS} =28V, I _{DS} =300mA, Measured in Functional Test	$V_{GS(Q)}$		-2.45		V

^{2.}Bias Conditions should also satisfy the following expression: Pdiss < (Tj - Tc) / RJC and Tc = Tcase


Typical performance

0.5-3.0GHz

Figure 1: Small singal gain and return loss Vs Frequency Vgs=-2.45V, Vds=28V, Idq=300mA, input power=0dBm

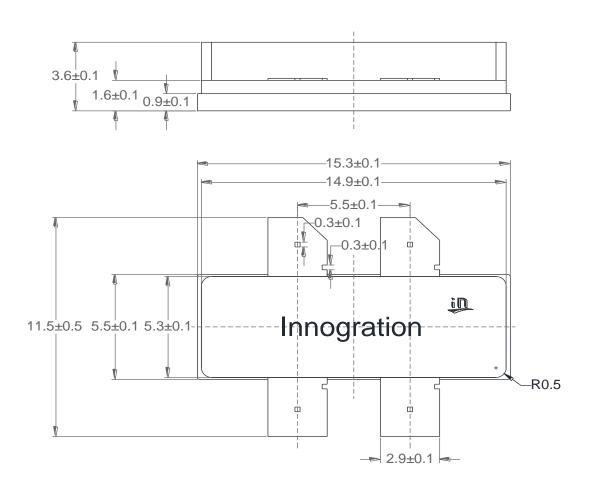


Figure 3: Picture and Bill of materials of 0.5-3GHz wide band application circuit (Layout Gerber file upon request)

Component	Description	Suggestion	
C8	470uF/63V		
C6, C7	10uF/200V-1210	Ceramic multilayer capacitor	
C1	18pF	MQ400805	
C2, C4	18pF	MQ30111	
C3	27pf	.MQ201111	
C5	1000pF	MQ201111	
C9	1pF	MQ201111	
L1	1mm wire,	DIY	
LI	3mm diameter,3turns	DIT	
R1	10 Ω -2512	Chip Resistor	
РСВ	RT6006,ER=6.15,20mil / Rogers4350 20mil		

Earless Flanged Ceramic Package; 4 leads

Document Number: XTAH30160L4 Advanced Datasheet V1.0

Revision history

Table 4. Document revision history

Date	Revision	Datasheet Status
2025/2/27	V1.0	Advanced Datasheet Creation

Application data based on YHG-25-08

Notice

Specifications are subject to change without notice. Innogration believes the information within the data sheet to be reliable. Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose.

"Typical" parameter is the average values expected by Innogration in quantities and are provided for information purposes only. It can and do vary in different applications and related performance can vary over time. All parameters should be validated by customer's technical experts for each application.

Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility.

For any concerns or questions related to terms or conditions, please check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.