Document Number: XTAH30080GX Preliminary Datasheet V1.0 # Gallium Nitride 28V 80W, RF Power Transistor ## **Description** The XTAH30080GX is a 80W internally matched, GaN HEMT, designed for multiple applications, especially LTE/LTE-A/LTE-U up to 3GHz. In its typical 0.5-3G broadband application, it can deliver 60W, and typical 0.3-1G broadband application, it can deliver 70W across the full band •Typical performance (on 0.5-3GHz wideband fixture with device soldered) Vds=28V, Vgs=-2.26V, Idq=100mA, Test signal: CW | Freq(MHz) | Pin(dBm) | Pout(dBm) | Pout(W) | IDS(A) | Gain(dB) | Eff(%) | 2 nd | 3 rd | |-----------|----------|-----------|---------|--------|----------|--------|-----------------|-----------------| | 500 | 34.54 | 49.21 | 83.37 | 4.64 | 14.67 | 64.17 | -14.30 | -12.5 | | 700 | 31.18 | 48.28 | 67.30 | 3.6 | 17.1 | 66.76 | -18.40 | -17.2 | | 800 | 33.19 | 48.29 | 67.45 | 3.72 | 15.1 | 64.76 | -14.10 | -13.4 | | 1000 | 34.25 | 48.51 | 70.96 | 4.14 | 14.26 | 61.21 | -13.20 | -11.5 | | 1500 | 36.49 | 49.04 | 80.17 | 5 | 12.55 | 57.26 | -17.50 | -25.4 | | 2000 | 38.21 | 49.07 | 80.72 | 5.89 | 10.86 | 48.95 | | | | 2500 | 38.7 | 50.2 | 104.71 | 6.7 | 11.5 | 55.82 | | | | 3000 | 38.13 | 48.8 | 75.86 | 4.73 | 10.67 | 57.28 | | | •Typical performance (on 0.3-1GHz wideband fixture with device soldered) Vds=28V, Vgs=-2.26V, Idq=100mA, Test signal: CW | Freq(MHz) | Pin(dBm) | Pout(dBm) | Pout(W) | IDS(A) | Gain(dB) | Eff(%) | 2 nd | 3 rd | |-----------|----------|-----------|---------|--------|----------|--------|-----------------|-----------------| | 300 | 31 | 49.64 | 92.04 | 4.87 | 18.64 | 67.50 | -12.20 | -13.8 | | 400 | 27.5 | 49.27 | 84.53 | 4.07 | 21.77 | 74.17 | -26.00 | -13.2 | | 500 | 26.5 | 48.93 | 78.16 | 4.25 | 22.43 | 65.68 | -20.70 | -13.9 | | 600 | 30.3 | 49.4 | 87.10 | 5.06 | 19.1 | 61.47 | -15.50 | -14.5 | | 700 | 33.7 | 49.8 | 95.50 | 5 | 16.1 | 68.21 | -11.60 | -12.8 | | 800 | 32.6 | 49.47 | 88.51 | 5.33 | 16.87 | 59.31 | -13.30 | -17.9 | | 900 | 30.8 | 49 | 79.43 | 3.91 | 18.2 | 72.55 | -13.20 | -26.5 | | 1000 | 29.8 | 49.2 | 83.18 | 4.31 | 19.4 | 68.92 | -12.40 | -29.1 | #### **Applications and Features** - Suitable for wireless communication infrastructure, wideband amplifier, EMC testing, ISM etc. - High Efficiency and Linear Gain Operations - Thermally Enhanced Industry Standard Package - High Reliability Metallization Process - Excellent thermal Stability and Excellent Ruggedness - Compliant to Restriction of Hazardous Substances (RoHS) Directive 2002/95/EC ### **Important Note:** Proper Biasing Sequence for GaN HEMT Transistors #### **Turning the device ON** - 1. Set VGS to the pinch--off (VP) voltage, typically -5 V - 2. Turn on VDS to nominal supply voltage (28V) - 3. Increase VGS until IDS current is attained - 4. Apply RF input power to desired level # Turning the device OFF - 1. Turn RF power off - 2. Reduce VGS down to VP, typically -5 V - 3. Reduce VDS down to 0 V - 4. Turn off VGS # Innogration (Suzhou) Co., Ltd. Document Number: XTAH30080GX Preliminary Datasheet V1.0 **Table 1. Maximum Ratings** | Rating | Symbol | Value | Unit | |--|------------------|-------------|------| | DrainSource Voltage | V _{DSS} | 150 | Vdc | | GateSource Voltage | V _{GS} | -10,+2 | Vdc | | Operating Voltage | V _{DD} | 40 | Vdc | | Maximum Forward Gate Current @ Tc = 25°C | Igmax | 21.8 | mA | | Storage Temperature Range | Tstg | -65 to +150 | °C | | Case Operating Temperature | Tc | +150 | °C | | Operating Junction Temperature(See note 1) | T₃ | +200 | °C | Note: 1. Continuous operation at maximum junction temperature will affect MTTF #### **Table 2. Thermal Characteristics** | Characteristic | Symbol | Value | Unit | |---|--------|-------|------| | Thermal Resistance, Junction to Case | Polo | 1.4 | CAN | | T _C = 85°C, T _J =200°C, RF CW operation | Rejc | 1.4 | C/W | **Table 3. Electrical Characteristics** (T_C = 25 °C unless otherwise noted) #### **DC Characteristics** | Characteristic | Conditions | Symbol | Min | Тур | Max | Unit | |--|---|-----------|-----|------|-----|------| | Drain-Source Breakdown Voltage V _{GS} =-8V; I _{DS} =21.8mA | | V_{DSS} | 150 | | | V | | Gate Threshold Voltage | shold Voltage $V_{DS} = 28V, I_D = 100 \text{mA}$ | | | -2.3 | | V | ## 0.5-3GHz # **Typical performance** Figure 2: Network analyzer output S11/S21 ^{2.}Bias Conditions should also satisfy the following expression: Pdiss < (Tj - Tc) / RJC and Tc = Tcase Figure 3: Picture of application board | Component | Description | Suggestion | |---------------|--------------------|------------| | C7 | 470uF/63V | | | C5,C6 | 10uF | 10uF/100V | | C1,C2, C3, C4 | 18pF(MQ300805) | | | C8, C9 | 0.9pF(MQ300805) | | | C10 | 0.5pF(MQ300805) | | | R1 | Chip Resistor,10Ω | 0805 | | РСВ | 20mil Rogers 4350B | | Document Number: XTAH30080GX Preliminary Datasheet V1.0 # **Package Outline** ## Flanged ceramic package; 2 leads Figure 1. Package Outline PKG-G2E Document Number: XTAH30080GX Preliminary Datasheet V1.0 # **Revision history** #### **Table 4. Document revision history** | Date | Revision | Datasheet Status | |----------|----------|--------------------------------| | 2025/8/1 | V1.0 | Preliminary Datasheet Creation | Application based on YHG-25-28/29 #### **Notice** Specifications are subject to change without notice. Innogration believes the information within the data sheet to be reliable. Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameter is the average values expected by Innogration in quantities and are provided for information purposes only. It can and do vary in different applications and related performance can vary over time. All parameters should be validated by customer's technical experts for each application. Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility. For any concerns or questions related to terms or conditions, please check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.