Document Number: XTAH42070GX Advanced Datasheet V1.0

GaN 28V, 70W, RF Power Transistor

Description

The XTAH42070GX is a 70W internally matched, GaN HEMT, designed for ultrawide RF CW or pulse applications under 4.2GHz. In typical application within 0.4-4GHz, it can deliver >50W CW across the full band

There is no guarantee of performance when it is used in applications designed outside of these frequencies.

400-4000M

Vds=28V, Idq=100mA, signal: CW, with device soldered (Data up to 40V upon request)

Freq(MHz)	Pin(dBm)	Pout(dBm)	Pout(W)	Ids(A)	Gain(dB)	Eff(%)
400	30.94	47.56	57.02	3.53	16.62	57.69
600	33.32	48.09	64.42	3.64	14.77	63.20
1000	34.04	48.19	65.92	3.92	14.15	60.06
1500	37.5	48.19	65.92	3.62	10.69	65.03
2000	39.19	47.95	62.37	4.18	8.76	53.29
2500	37.94	48.69	73.96	4.75	10.75	55.61
3000	38.7	47	50.12	5.05	8.3	35.44
3500	39.25	47.61	57.68	4.86	8.36	42.38
4000	38.4	47.5	56.23	4.17	9.1	48.16

2400-4200M

Vds=28V, Idq=100mA, signal: CW, with device soldered

Freq(MHz)	Pin(dBm)	Pout(dBm)	Pout(W)	Ids(A)	Gain(dB)	Eff(%)
2400	37.70	48.50	70.8	4.92	10.8	51.4
3000	38.30	48.30	67.6	5.50	10.0	43.9
3500	37.50	48.50	70.8	5.92	11.0	42.7
4000	37.70	48.90	77.6	5.54	11.2	50.0
4280	39.40	48.20	66.1	4.35	8.8	54.2

Applications and Features

- Suitable for wireless communication infrastructure, wideband amplifier, EMC testing, ISM etc.
- High Efficiency and Linear Gain Operations
- Thermally Enhanced Industry Standard Package
- High Reliability Metallization Process
- Excellent thermal Stability and Excellent Ruggedness
- Compliant to Restriction of Hazardous Substances (RoHS) Directive 2002/95/EC

Important Note: Proper Biasing Sequence for GaN HEMT Transistors

Turning the device ON

- 1. Set VGS to the pinch--off (VP) voltage, typically -5 V
- 2. Turn on VDS to nominal supply voltage (28V)
- 3. Increase VGS until IDS current is attained
- 4. Apply RF input power to desired level

Turning the device OFF

- 1. Turn RF power off
- 2. Reduce VGS down to VP, typically -5 V
- 3. Reduce VDS down to 0 V
- 4. Turn off VGS

XTAH42070GX

Document Number: XTAH42070GX Advanced Datasheet V1.0

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
DrainSource Voltage	V _{DSS}	150	Vdc
GateSource Voltage	V_{GS}	-10,+2	Vdc
Operating Voltage	V _{DD}	40	Vdc
Maximum Forward Gate Current @ Tc = 25°C	Igmax	16.8	mA
Storage Temperature Range	Tstg	-65 to +150	°C
Case Operating Temperature	Tc	+150	°C
Operating Junction Temperature(See note 1)	T₃	+225	°C

Note: 1. Continuous operation at maximum junction temperature will affect MTTF

Table 2. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction to Case	Rejc	2.3	CAM
T _C = 85°C, T _J =200°C, RF CW operation	RejC	2.3	C/W

Table 3. Electrical Characteristics ($T_C = 25^{\circ}C$ unless otherwise noted)

DC Characteristics

Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Drain-Source Breakdown Voltage	V _{GS} =-8V; I _{DS} =16.8mA	V_{DSS}	150			V
Gate Threshold Voltage $V_{DS} = 28V$, $I_D = 16.8$ mA		V _{GS} (th)	-4	-	-2	V
Gate Quiescent Voltage	V _{DS} =28V, I _{DS} =100mA, Measured in Functional Test	V _{GS(Q)}		-2.35		V

^{2.}Bias Conditions should also satisfy the following expression: Pdiss < (Tj - Tc) / RJC and Tc = Tcase

400-4000MHz

Figure 2: Output of network analyzer S11, S21 Vgs=-2.4V, Vds=32V, Idq=130mA, input power=0dBm

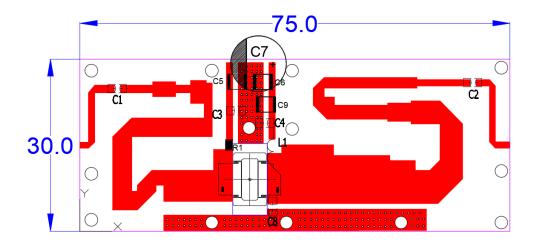
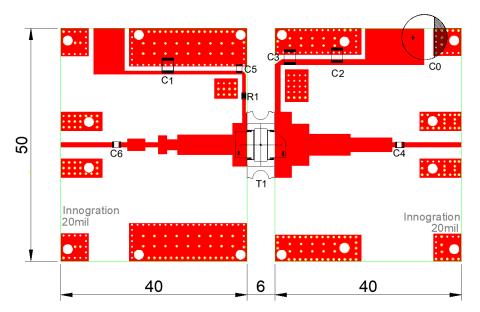



Figure 3: Layout info and bill of materials for 0.7-4GHz application circuit


Component	Description	Suggestion
C7	470uF/63V	
C5,C6,C9	10uF	10uF/100V
C1,C2, C3, C4	18pF(MQ300805)	
C8	0.9pF(MQ300805)	
L1	0.5mm wire,4mm innerdiameter,3turns	DIY
R1	Chip Resistor,10Ω	0805
РСВ	20mil Rogers 4350B	

2400-4280MHz

Figure 2: Output of network analyzer S11, S21 Vgs=-2.4V, Vds=32V, Idq=130mA, input power=0dBm

Figure 3: Layout info and bill of materials for 0.7-4GHz application circuit

Document Number: XTAH42070GX Advanced Datasheet V1.0

Component	Description	Suggestion
CO	470uF/100V	Electrolytic Capacitor
C1, C2	10uF	1210
C3, C4	6.8pF	MQ301111
C5,C6	6.8pF	MQ400805
R1	Chip Resistor,10Ω	0805
T1	XTAH42070GX V1	Innogration
PCB	Rogers 4350b, thickness 20 mils, 1oz copper	

Package Outline

Flanged ceramic package; 2 leads

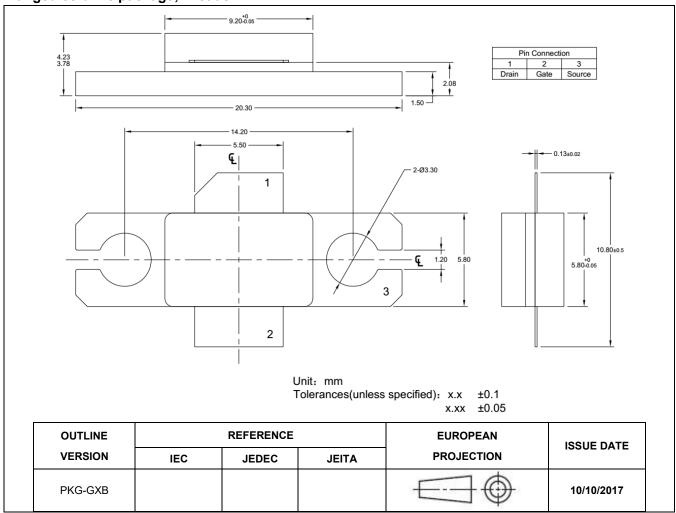


Figure 1. Package Outline PKG-G2E

Document Number: XTAH42070GX Advanced Datasheet V1.0

Revision history

Table 4. Document revision history

Date	Revision	Datasheet Status
2025/3/28	V1.0	Preliminary Datasheet Creation
2025/6/5	V1.1	Add 2.4-2.42G application data

Application data based on YHG-25-13/RXT-25-19

Notice

Specifications are subject to change without notice. Innogration believes the information within the data sheet to be reliable. Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose.

"Typical" parameter is the average values expected by Innogration in quantities and are provided for information purposes only. It can and do vary in different applications and related performance can vary over time. All parameters should be validated by customer's technical experts for each application.

Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility.

For any concerns or questions related to terms or conditions, please check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.