
Document Number: XTAH25120A2C Preliminary Datasheet V1.0

GaN HEMT 28V, 2450MHz 120W, RF Power Transistor Description

The XTAH25120A2C is a 120W GaN HEMT, designed for ISM/RF Energy application within S Band low end, especially at 2.45GHz.It can be used in CW, Pulse and any other modulation modes. It is recommended to use paired XTAH25120A2C to deliver >200W in cost effective ways, and offer better thermal management and easier maintenance.

 Typical 2.4-2.5GHz full band class AB RF Performance with 1pcs device soldered Vds=28V, Idq=110mA, CW

Fı	req	P1dB	P1dB	P1dB	P1dB	P3dB	P3dB	P3dB
(N	1Hz)	(dBm)	(W)	Eff(%)	Gain(dB)	(dBm)	(W)	Eff(%)
24	400	50.6	114.7	60.7	16.77	51.67	146.9	68
24	450	50.45	111.0	65.0	17.49	51.45	139.8	71
25	500	50.12	102.9	68.7	18.07	51	126.0	74

Recommended driver: ITEH38007P3 or GTAH35006PD

 Typical 2.4-2.5GHz full band class AB RF Performance with 2pcs devices soldered Vds=28V, Idq=110mA, CW

Freq	P1dB	P1dB	P1dB	P1dB	P3dB	P3dB	P3dB
(MHz)	(dBm)	(W)	Eff(%)	Gain(dB)	(dBm)	(W)	Eff(%)
2400	53.32	215.0	59.8	16.44	54.21	263.5	65
2450	53.3	214.0	64.3	16.85	54.13	258.8	69
2500	52.87	193.7	66.8	17.37	53.79	239.2	72

Recommended driver: ITEH27010P3 or GTAH35012PD

Applications

- S band power amplifier
- ISM/RF Energy power amplifier

Important Note: Proper Biasing Sequence for GaN HEMT Transistors

Turning the device ON

- 1. Set VGS to the pinch--off (VP) voltage, typically –5 $\mbox{\em V}$
- 2. Turn on VDS to nominal supply voltage
- 3. Increase VGS until IDS current is attained
- 4. Apply RF input power to desired level

Turning the device OFF

- 1. Turn RF power off
- 2. Reduce VGS down to VP, typically -5 V
- 3. Reduce VDS down to 0 V
- 4. Turn off VGS

Table 1. Maximum Ratings

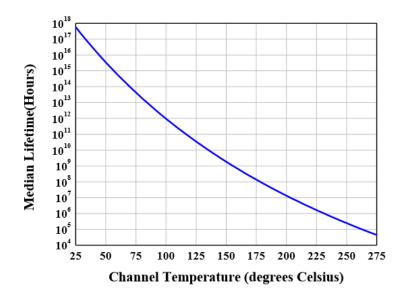
Table 1. Maximum Ratings						
Rating	Symbol	Value	Unit			
DrainSource Voltage	$V_{ extsf{DSS}}$	+150	Vdc			
GateSource Voltage	V _{GS}	-8 to +0.5	Vdc			
Operating Voltage	V _{DD}	36	Vdc			
Maximum gate current	Igs	27.2	mA			
Storage Temperature Range	Tstg	-65 to +150	°C			
Case Operating Temperature	T _C	+150	°C			
Operating Junction Temperature	TJ	+225	°C			

Document Number: XTAH25120A2C Preliminary Datasheet V1.0

Table 2. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction to Case by FEA	Rejc	1.6	°C /W
T _C = 85°C, at Pdiss=50W	RejC	1.6	-0 / ۷۷

Table 3. Electrical Characteristics (TA = 25℃ unless otherwise noted)


DC Characteristics (measured on wafer prior to packaging)

Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Drain-Source Breakdown Voltage VGS=-8V; IDS=27.2mA		V _{DSS}		150		V
Gate Threshold Voltage VDS =10V, ID = 27.2mA		$V_{GS(th)}$	-4		-2	V
Gate Quiescent Voltage	VDS =28V, IDS=60mA, Measured in Functional Test	$V_{GS(Q)}$		-2.3		V

Ruggedness Characteristics

Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Load mismatch capability	2.5GHz, Pout=120W Pulsed CW					
	All phase,	VSWR		10:1		
	No device damages					

Figure 2: Median Lifetime vs. Channel Temperature

XTAH25120A2C single device Typical performance

Figure 3: Network analyzer output S11/S21

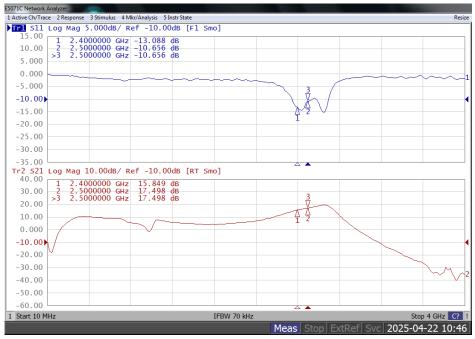
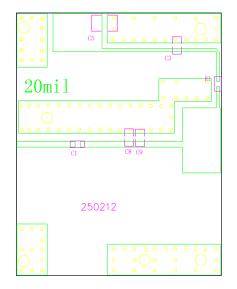



Figure 4: Picture of application board

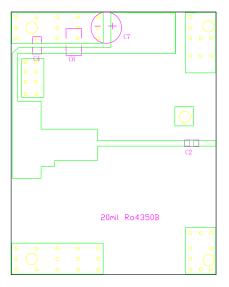


Table 4. Bill of materials of application board (PCB layout upon request)

Designator	Comment	Footprint	Quantity
C1, C2, C3, C4	10 pF	0805	4
C5, C6	10uF/100V	1210	2
C7	470 uF/63V		1
C8, C9	1.0 pF	0603	2
R1	10 Ω	0603	1

XTAH25120A2C*2 combination Typical performance

Figure 5: Network analyzer output S11/S21

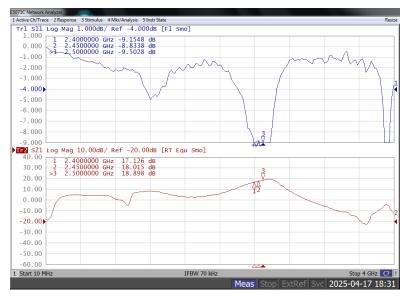
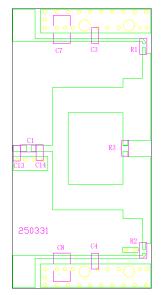



Figure 6: Picture of application board

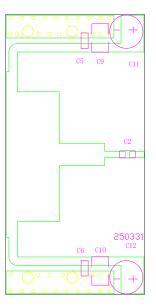
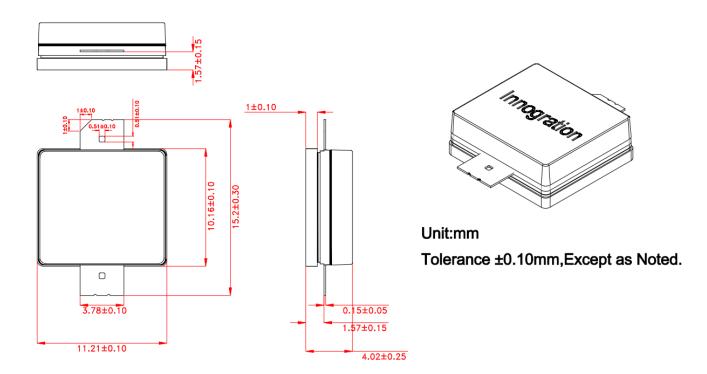



Table 5. Bill of materials of application board (PCB layout upon request)

Designator	Comment	Footprint	Quantity
C1, C2, C3, C4, C5, C6	12 pF	0805	6
C7, C8, C9, C10	10uF/100V	1210	4
C11, C12,	470 uF/63V		2
R1, R2, R3	10 Ω	0603	3
C13	1.0 pF	0603	1
C14	2.0 pF	0603	1

Document Number: XTAH25120A2C Preliminary Datasheet V1.0

Package Dimensions (Unit:mm)

Revision history

Table 4. Document revision history

Date	Revision	Datasheet Status
2025/4/22 V1.0		Preliminary Datasheet Creation

Application data based on: LSM-25-06/08

Notice

Specifications are subject to change without notice. Innogration believes the information within the data sheet to be reliable. Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose.

"Typical" parameter is the average values expected by Innogration in quantities and are provided for information purposes only. It can and do vary in different applications and related performance can vary over time. All parameters should be validated by customer's technical experts for each application.

Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility.

For any concerns or questions related to terms or conditions, please check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.