
200W, HF-200MHz 28V High Power RF LDMOS

Description

The MU0520X is a 200W single ended 28V LDMOS, highly rugged, unmatched for any applications within HF-200MHz

It supports CW, and pulsed and any modulated signal at either saturated or linear application.

• Typical Performance (On Innogration multiple fixtures with device soldered):

 $V_{DD} = 28 \text{ Volts}$, $I_{DQ} = 150 \text{ mA}$, CW.

Frequency	Pin (dBm)	Gp (dB)	P _{OUT} (W)	η _D (%)	2 nd (dB)	3 rd (dB)
30MHz	28	25	200	78	-26	-39
40.68MHz	33	20	203	81	-28	-41

Features

- High Efficiency and Linear Gain Operations
- Integrated ESD Protection
- Excellent thermal stability, low HCI drift
- Large Positive and Negative Gate/Source Voltage Range for Improved Class C Operation
- Pb-free, RoHS-compliant

Suitable Applications

- 2-30MHz (HF or Short wave communication)
- 30-88MHz (Ground communication)
- 54-88MHz (TV VHF I)
- 88-108MHz (FM)
- 118 -140MHz (Avionics)

- 136-174MHz (Commercial ground communication)
- 160-230MHz (TV VHF III)

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
DrainSource Voltage	$V_{\scriptscriptstyle DSS}$	+95	Vdc
GateSource Voltage	$V_{\sf GS}$	-10 to +10	Vdc
Operating Voltage	V_{DD}	+36	Vdc
Storage Temperature Range	Tstg	-65 to +150	°C
Case Operating Temperature	T _c	+150	°C
Operating Junction Temperature	T,	+225	°C

Table 2. Thermal Characteristics

Characteristic	Symbol	Value	Unit	
Thermal Resistance, Junction to Case	Do 10	0.55	°C/W	
T _C = 85°C, T _J =200°C, DC test	Rejc	0.55	°C/VV	

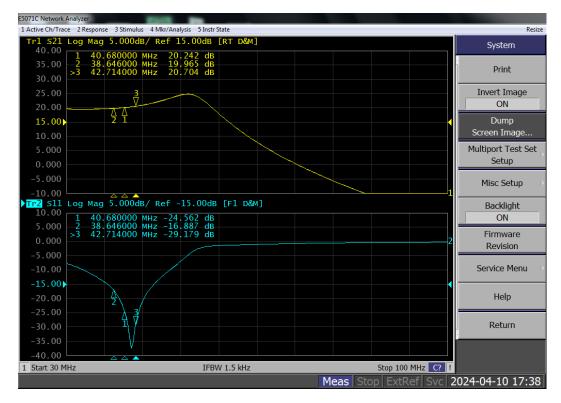
Table 3. ESD Protection Characteristics

Test Methodology	Class		
Human Body Model (per JESD22A114)	Class 2		

Table 4. Electrical Characteristics (TA = 25 $^{\circ}$ C unless otherwise noted)

`					
Characteristic	Symbol	Min	Тур	Max	Unit
C Characteristics					
Drain-Source Voltage	$V_{(BR)DSS}$	95			V
V_{GS} =0, I_{DS} =1.0mA	V (BR)DSS	95	· · · · · ·		V
Zero Gate Voltage Drain Leakage Current					^
$(V_{DS} = 75V, V_{GS} = 0 V)$	I _{DSS}			1	μА
Zero Gate Voltage Drain Leakage Current				4	^
$(V_{DS} = 28 \text{ V}, V_{GS} = 0 \text{ V})$	I _{DSS}	·	· · · · · ·	1	μΑ
GateSource Leakage Current				1	^
$(V_{GS} = 10 \text{ V}, V_{DS} = 0 \text{ V})$	I _{GSS}		<u> </u>	ı	μΑ
Gate Threshold Voltage	V (II)		2.2		V
$(V_{DS} = 28V, I_D = 400 \mu A)$	V _{GS} (th)		2.2		V
Gate Quiescent Voltage	V		3.05		V
$(V_{DD} = 28 \text{ V}, I_D = 150 \text{ mA}, \text{Measured in Functional Test})$	$V_{GS(Q)}$				V
Common Source Input Capacitance			187		, r
$(V_{GS} = 0V, V_{DS} = 28 V, f = 1 MHz)$	C _{ISS}		107		pF
Common Source Output Capacitance	6		70		۲
$(V_{GS} = 0V, V_{DS} = 28 V, f = 1 MHz)$	Coss		79		pF
Common Source Feedback Capacitance			4.0		
$(V_{GS} = 0V, V_{DS} = 28 V, f = 1 MHz)$	C_{RSS}		4.6		pF
functional Tests (In Demo Test Fixture, 50 ohm system) $V_{DD} = 28$	3 Vdc, I _{DQ} = 150mA, f	= 150 MHz, Pi	n=2W, CW Sig	gnal Measurem	nents.
Power Gain	Gn		20		dВ

		-	•	
Power Gain	Gp	 20		dB
Drain Efficiency@Pout	η _D	 80		%
Output Power	P _{out}	 200		W
Input Return Loss	IRL	 -7		dB


Load Mismatch (In Innogration Test Fixture, 50 ohm system): V_{DD} = 28 Vdc, I_{DQ} = 150 mA, f = 150 MHz

VSWR 20:1 at 200W pulse CW Output Power	No Device Degradation
V3VVK 20.1 at 200VV pulse CVV Output Fower	No Device Degradation

40.68MHz

TYPICAL CHARACTERISTICS

Figure 1: Network analyzer output S11/221

Reference Circuit of Test Fixture Assembly Diagram (PCB file upon request)

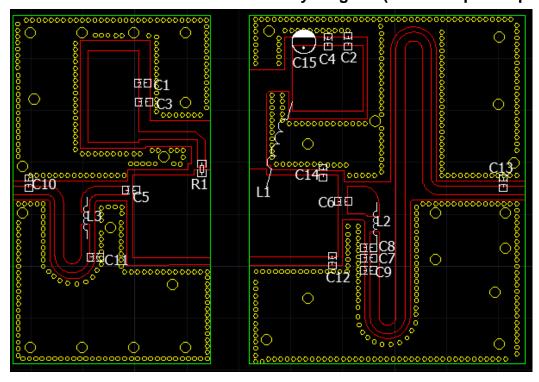


Table 1. Test Circuit Component Designations and Values (40.68MHz)

Component	Description	Suggestion
C1,C2	10uF	10uF/100V
C3~C6	10nF	10nF/100V
C7,C8	150pF	MQ101111
C9	39pF	MQ101111
C10	120pF	MQ101111
C11	47pF	MQ101111
C12	18pF	MQ101111
C13	12pF	MQ101111
C14	200pF	MQ101111
C15	470uF/63V	Electrolytic Capacitor
R1	10 Ω	Chip Resistor
L1	1.5mm/5mm, 8 turns	
L2	1.5mm/5mm, 4 turns	
L3	1.5mm/5mm, 6 turns	
PCB	30Mil	Rogers4350

Package Outline

Flanged ceramic package; 2 leads

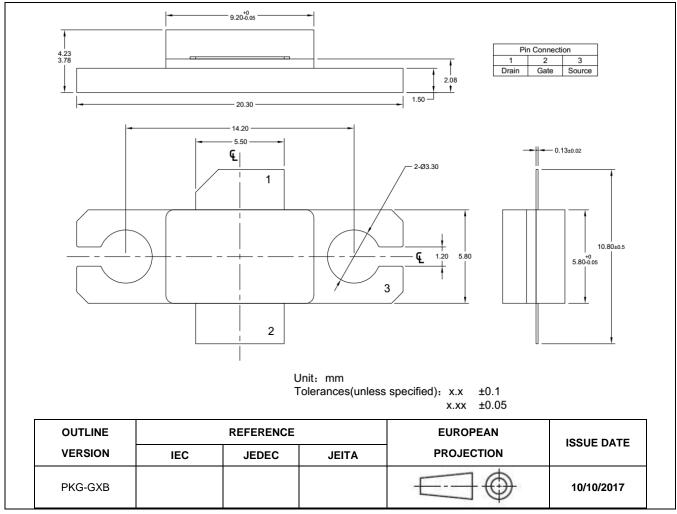


Figure 1. Package Outline PKG-G2E

Revision history

Table 5. Document revision history

Date	Revision	Datasheet Status
2025/4/23	Rev 1.0	Preliminary datasheet

Application data based on TC-24-22/SJJ-25-09

Disclaimers

Specifications are subject to change without notice. Innogration believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Innogration for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Innogration . Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Innogration in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility. For any concerns or questions related to terms or conditions, pls check with Innogration and authorized distributors

Copyright © by Innogration (Suzhou) Co.,Ltd.