
Document Number: ITDE10450C2 Preliminary Datasheet V1.4

915MHz, 450W, 40V High Power RF LDMOS FETs

Description

The ITDE10450C2 is a 450-watt, internally matched LDMOS FET, designed for ISM applications including RF Energy at 915MHz. It Can be used in Class AB/B and Class C configuration, supporting both CW and pulsed signal

In typical application using 2*ITDE10450C2 in parallel, it can deliver more than 900W CW with high efficiency, see its standalone application report

•Typical Performance using single **ITDE10450C2** (On Innogration fixture with device soldered): VDD = 40 Volts, I_{DQ} = 50 mA, CW signal

Freq(MHz)	Pin(dBm)	Pout(dBm)	Pout(W)	IDS(A)	Gain(dB)	EFF(%)
915	40	56.7	470	16.7	16.7	70.0%

Features

- High Efficiency and Linear Gain Operations
- Integrated ESD Protection
- Internally Matched for Ease of Use
- Excellent thermal stability, low HCI drift

- Large Positive and Negative Gate/Source Voltage Range for Improved Class C Operation
- · Pb-free, RoHS-compliant

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
DrainSource Voltage	V _{DSS}	95	Vdc
GateSource Voltage	V_{GS}	-10 to +10	Vdc
Operating Voltage	V_{DD}	+42	Vdc
Storage Temperature Range	Tstg	-65 to +150	°C
Case Operating Temperature	Tc	+150	°C
Operating Junction Temperature	TJ	+225	°C

Table 2. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction to Case	Do 10	0.3	0C/M
T _C = 85°C, T _J =200°C, DC test	R⊕JC	0.3	°C/W

Table 3. ESD Protection Characteristics

Test Methodology	Class		
Human Body Model (per JESD22A114)	Class 2		

Table 4. Electrical Characteristics (TA = 25 C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
DC Characteristics (per half section)					
Drain-Source Breakdown Voltage	$V_{\scriptscriptstyle DSS}$	95			V
(V _{GS} =0V; I _D =100uA)	V DSS	95			V
Zero Gate Voltage Drain Leakage Current				10	^
$(V_{DS} = 40 \text{ V}, V_{GS} = 0 \text{ V})$	I _{DSS}			10	μΑ

Document Number: ITDE10450C2 Preliminary Datasheet V1.4

GateSource Leakage Current					
$(V_{GS} = 6 \text{ V}, V_{DS} = 0 \text{ V})$	Igss			1	μΑ
Gate Threshold Voltage	V (III)		2.0		V
$(V_{DS} = 40V, I_{D} = 600 \text{ uA})$	$V_{\sf GS}(th)$		2.0		V
Gate Quiescent Voltage		2.4	2.02	2.4	V
(V _{DD} = 40 V, I _{DQ} = 100 mA, Measured in Functional Test)	$V_{GS(Q)}$	2.1	2.62	3.1	V

Functional Tests (On Innogration Test Fixture, 50 ohm system) : V_{DD} =40 Vdc, I_{DQ} = 50 mA, f = 915 MHz, Pin=40dBm CW Signal Measurements.

Power Gain	Gp	 16.5	 dB
Drain Efficiency @ P _{OUT}	η _D	 70	%
Output Power	P _{out}	 450	 W
Input Return Loss	IRL	 -7	 dB

Load Mismatch (In Innogration Test Fixture, 50 ohm system): $V_{DD} = 40 \text{ Vdc}$, $I_{DQ} = 50 \text{ mA}$, f = 915 MHz

VSWR 10:1 at 450W Output Power	No Device Degradation
at all Phase Angles, pulsed CW, 100us, 10%	

Reference Circuit of Test Fixture Assembly Diagram 1*ITDE10450C2

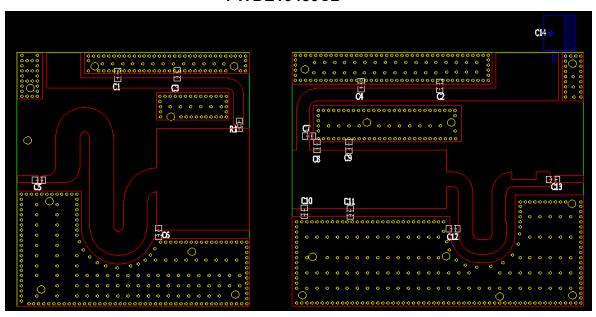


Figure 1. Test Circuit Component Layout

Table 1. Test Circuit Component Designations and Values

Component	Description	Suggestion
C1,C2	10Uf	10Uf/100V
C3,C4,C5	56Pf	MQ101111
C6	7.5Pf	MQ101111
C14	2000Uf/63V	Electrolyic Capacitor
R1	10 Ω Chip Resistor	
C7	9.1Pf	MQ101111
C8	12Pf MQ101111	
C9	8.2Pf	MQ101111
C10	11Pf	MQ101111
C11	10Pf	MQ101111
C12	0.5Pf MQ101111	
C13	47Pf MCM-1-300V-D-470J	
PCB	30mil Rogers 4350B	

TYPICAL CHARACTERISTICS

Figure 2. Drain Efficiency and Power Gain as Function of CW Output Power

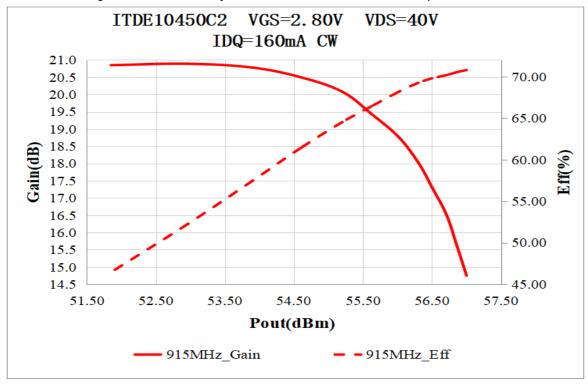
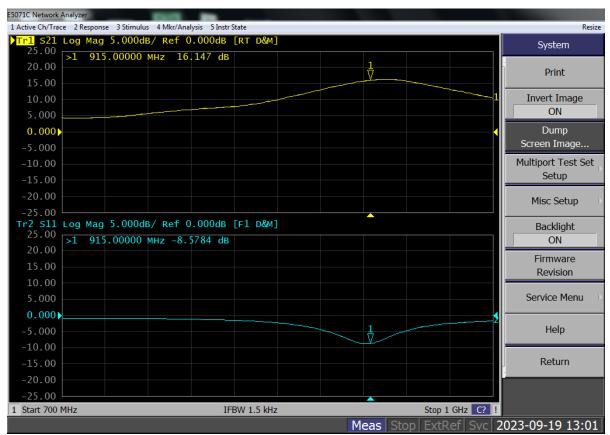
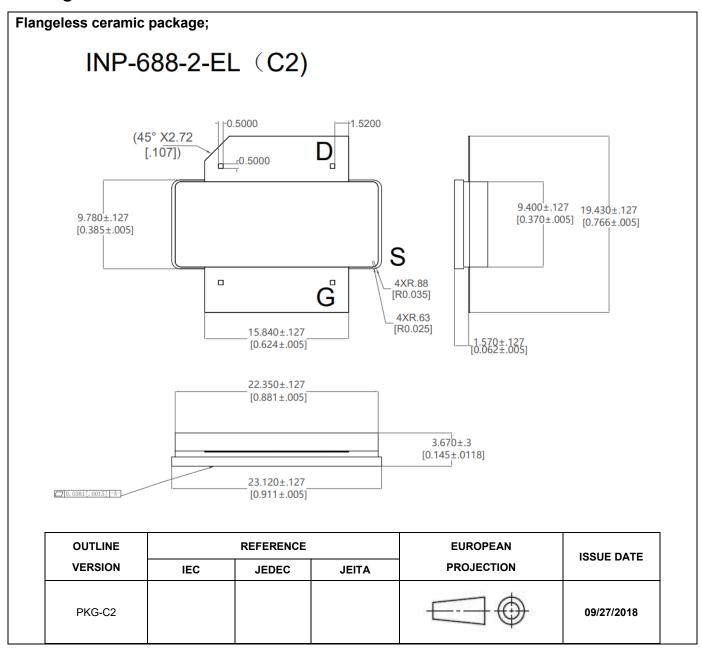




Figure 3. Network analyzer output S11/S21

Package Outline

Document Number: ITDE10450C2 Preliminary Datasheet V1.4

Revision history

Table 6. Document revision history

Date	Revision	Datasheet Status
2022/1/12	Rev 1.0	Preliminary Datasheet
2023/9/19	Rev 1.1	Add single device application data
2023/10/20	Rev 1.2	Modify the error of thermal resistor and product rating on page 1 and 2
2025/2/16	Rev 1.3	Update according to improvement of 2 pcs combination
2025/4/24	Rev 1.4	Delete 2 pcs combination result and present by another newer test report

Application data based on JF-21-14/TC-23-60, LSM-25-02

Disclaimers

Specifications are subject to change without notice. Innogration believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Innogration for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Innogration . Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Innogration in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility. For any concerns or questions related to terms or conditions, pls check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.