Document Number: STAV65100C6 Preliminary Datasheet V1.0

GaN HEMT 50V, 100W, 5.9-6.5GHz Power Transistor

Description

The STAV65100C6 is a dual path 100W, internal matched GaN HEMT, operated from 5.9-6.5GHz. It features high gain, high efficiency, wide band and low cost, in 10*6mm open cavity plastic package.

It can be configured as a single stage Doherty capable of delivering Pavg of 14W.

There is no guarantee of performance when this part is used outside of stated frequencies. It is recommended to use copper coin underneath the transistor for best heat dissipation.

Typical Doherty Single--Carrier W--CDMA Characterization Performance:

V_{DS}= 50V, I_{DQ-Mian}=80 mA Vgs-main=-3.07V. Vgs-peak=-5.20V, 1 carrier WCDMA

Freq (MHz)	Pout (dBm)	ACPR (dBc)	Gain (dB)	Efficiency (%)
5900	(==::)	-30.85	10.19	43.01
6000		-38.30	10.41	41.19
6100		-35.20	10.81	38.87
6200	42	-32.19	10.55	36.50
6300		-32.25	10.59	35.60
6400		-34.21	10.34	35.96
6500		-36.12	9.95	36.90

Applications

- 5G advanced power amplifier
- C band power amplifier

Important Note: Proper Biasing Sequence for GaN HEMT Transistors

Turning the device ON

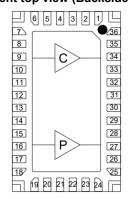

- 1. Set VGS to the pinch--off (VP) voltage, typically -5 V
- 2. Turn on VDS to nominal supply voltage
- 3. Increase VGS until IDS current is attained
- 4. Apply RF input power to desired level

Figure 1: Pin Connection definition

Turning the device OFF

- 1. Turn RF power off
- 2. Reduce VGS down to VP, typically -5 V
- 3. Reduce VDS down to 0 V
- 4. Turn off VGS

Transparent top view (Backside grounding for source)

STAV65100C6

Innogration (Suzhou) Co., Ltd.

Document Number: STAV65100C6 Preliminary Datasheet V1.0

Pin No. Symbol		Description			
8,9,10,11	RF IN/Vgs1 RF Input, Vgs bias for carrier path				
32,33,34,35	RF OUT/VDD1	RF OUT/VDD1 RF Output, VDD bias for carrier path			
14,15,16,17	RF IN/Vgs2 RF Input, Vgs bias for peak path				
26,27,28,29	RF OUT/VDD2	RF Output, VDD bias for peak path			
Rest pins	NC	No connection			
2,5,7,12,13,18,20,23,25,30,31,36,	CND	DC/RF Ground. Must be soldered directly to heatsink or copper coin for			
Package Base	GND	CW application.			

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
DrainSource Voltage	V _{DSS}	+200	Vdc
GateSource Voltage	V_{GS}	-8 to +0.5	Vdc
Operating Voltage	V_{DD}	55	Vdc
Maximum gate current	Igs	13	mA
Storage Temperature Range	Tstg	-65 to +150	°C
Case Operating Temperature	T _C	+150	°C
Operating Junction Temperature	TJ	+225	°C

Table 2. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction to Case by FEA	Rejc	TDD	°C /W
T _c = 85°C, Pdiss=30W at Pavg=42dBm WCDMA 1 carrier	Keac	TBD	-0///

Notes: Based on expected carrier amplifier efficiency of Doherty, Pavg assumes 10% peaking amplifier contribution of total average Doherty rated power. Thermal resistance is measured to package backside

Table 3. Electrical Characteristics (TA = 25 $^{\circ}$ C unless otherwise noted)

DC Characteristics (main path, measured on wafer prior to packaging)

Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Drain-Source Breakdown Voltage	VGS=-8V; IDS=5mA	V _{DSS}		200		V
Gate Threshold Voltage	VDS =10V, ID = 5mA	$V_{GS(th)}$	-4	-3.2	-2	V
Gate Quiescent Voltage	VDS =50V, IDS=55mA, Measured in Functional Test	$V_{GS(Q)}$		-3		V

DC Characteristics (peak path, measured on wafer prior to packaging)

Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Drain-Source Breakdown Voltage	VGS=-8V; IDS=8mA	V_{DSS}		200		V
Gate Threshold Voltage	VDS =10V, ID = 8mA	$V_{GS(th)}$	-4	-3.1	-2	V
Gate Quiescent Voltage	VDS =50V, IDS=60mA, Measured in Functional Test	$V_{GS(Q)}$		-3		V

Ruggedness Characteristics

Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Load mismatch capability	6GHz, Pout=42dBm WCDMA 1					
	Carrier, All phase,	VSWR		10:1		
	No device damages					

Document Number: STAV65100C6 Preliminary Datasheet V1.0

Figure 2: Efficiency and power gain as function of Pout

(VDD = 50 Vdc, IDQ = 80 mA, Pulse width=20us, duty cycle=20%)

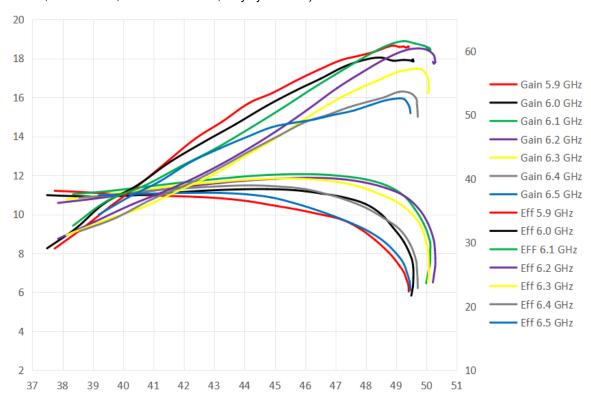
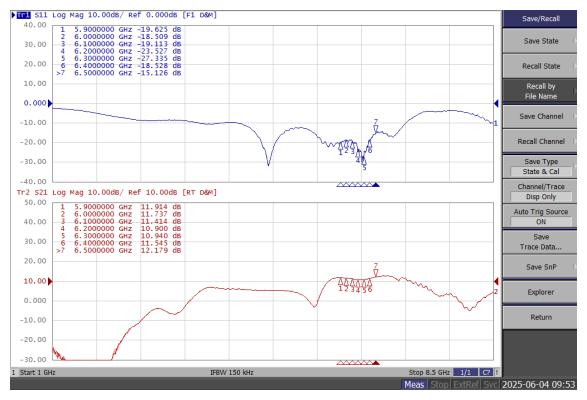
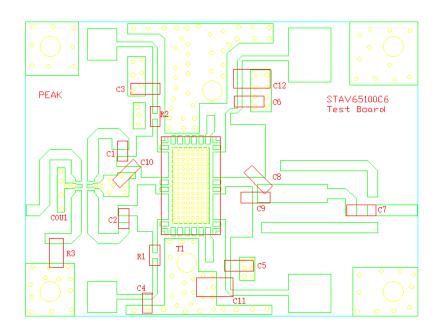
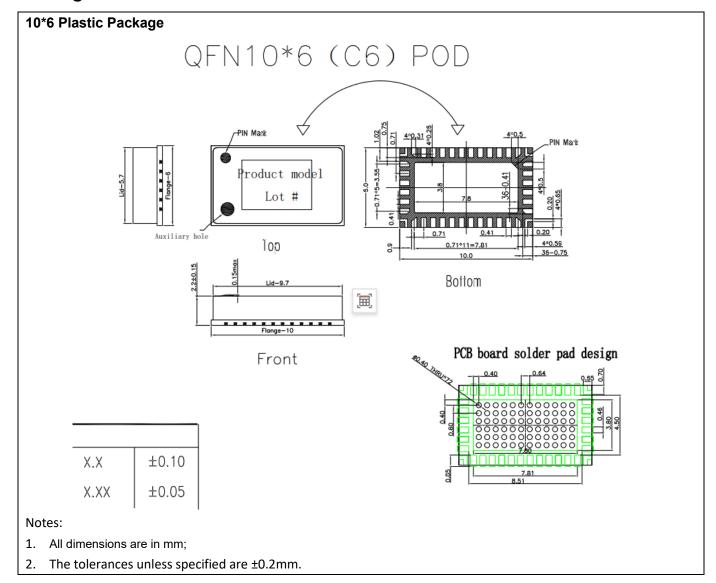




Figure 3: S11/S21 output from Network analyser

Innogration (Suzhou) Co., Ltd.



Part	Quantity	Description	Part Number	Manufacture
C1,C2,C3,C4,C5,C6,C7	7	2.0pFHigh Q	251SHS2R0BSE	TEMEX
		Capacitor		
C11,C12	2	10uF MLCC	GRM32EC72A106ME	Murata
			05	
C9	1	0.8pFHigh Q	251SHS0R8BSE	TEMEX
		Capacitor		
C8	1	8.2pFHigh Q	251SHS8R2BSE	TEMEX
		Capacitor		
C10	1	0.3pFHigh Q	251SHS0R3BSE	TEMEX
		Capacitor		
COU1	1	3 dB Bridge	C5060J5003AHF	ANAREN
R1,R2	1	10Ω Power	ESR03EZPF100	ROHM
		Resistor		
R3	1	51Ω Power	1206	ROHM
		Resistor		
T1	1	GaN	STAV65100C6	Innogration
		Transistor		

Innogration (Suzhou) Co., Ltd.

Document Number: STAV65100C6 Preliminary Datasheet V1.0

Package Dimensions

Revision history

Table 4. Document revision history

Date	Revision	Datasheet Status
2025/6/4	V1.0	Preliminary Datasheet Creation

Application data based on: LWH-25-21

Notice

Specifications are subject to change without notice. Innogration believes the information within the data sheet to be reliable. Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose.

"Typical" parameter is the average values expected by Innogration in quantities and are provided for information purposes only. It can and do vary in different applications and related performance can vary over time. All parameters should be validated by customer's technical experts for each application.

Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility.

For any concerns or questions related to terms or conditions, please check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.