Document Number: STCV10370A2C Preliminary Datasheet V1.0

GaN HEMT 50V, 300W, VHF/UHF Transistor

Description

The STCV10370A2C is a single ended 370watt, GaN HEMT, ideal for 4G/5G or CW applications within UHF up to 1GHz. There is no guarantee of performance when this part is used outside of stated frequencies. It is mainly recommended to use it for narrower bandwidth CW application.

Typical CW performance across 900-1000MHz with device soldered

VDD = 48 Vdc, IDQ = 100mA, CW

Freq	P2dB	P2dB	P2dB	P2dB	P3dB	P3dB	P3dB
(MHz)	(dBm)	(W)	Eff(%)	Gain(dB)	(dBm)	(W)	Eff(%)
900	56.38	434.8	76.1	19.77	56.65	462.4	78.5
950	55.04	319.0	70.2	20.05	55.59	362.6	73.7
1000	54.61	289.3	73.4	19.03	55.18	330.0	77.2

Recommended driver: ITGV22010C6 (50V LDMOS)

Applications

- P band power amplifier
- 5G base station amplifier
- PIM test equipment

Important Note: Proper Biasing Sequence for GaN HEMT Transistors

Turning the device ON

- 1. Set VGS to the pinch--off (VP) voltage, typically -5~V
- 2. Turn on VDS to nominal supply voltage
- 3. Increase VGS until IDS current is attained
- 4. Apply RF input power to desired level

Turning the device OFF

- 1. Turn RF power off
- 2. Reduce VGS down to VP, typically -5 V
- 3. Reduce VDS down to 0 V
- 4. Turn off VGS

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
DrainSource Voltage	V_{DSS}	+200	Vdc
GateSource Voltage	V_{GS}	-8 to +0.5	Vdc
Operating Voltage	V_{DD}	55	Vdc
Maximum gate current	Igs	47	mA
Storage Temperature Range	Tstg	-65 to +150	°C
Case Operating Temperature	T _C	+150	°C
Operating Junction Temperature	TJ	+225	°C

Table 2. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction to Case by FEA	Doug	1.2	0 C ////
T _C = 25°C, at Pd=140W,	Rejc	1.2	°C /W

Table 3. Electrical Characteristics (TA = 25℃ unless otherwise noted)

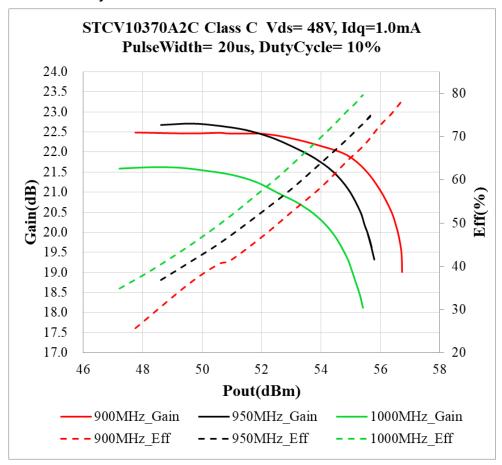
DC Characteristics (measured on wafer prior to packaging)

Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Drain-Source Breakdown Voltage VGS=-8V; IDS=47mA		V_{DSS}		200		V

STCV10370A2C

Innogration (Suzhou) Co., Ltd.

Document Number: STCV10370A2C Preliminary Datasheet V1.0


Gate Threshold Voltage	VDS =10V, ID = 47mA	$V_{GS(th)}$	-4	-3	-2	V
Gate Quiescent Voltage	VDS =50V, IDS=500mA, Measured in Functional Test	$V_{GS(Q)}$		-3.2		٧

Ruggedness Characteristics

Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Load mismatch capability	1GHz, Pout=370W pulse CW for					
	each path All phase,	VSWR		10:1		
	No device damages					

900-1000MHz

Figure 2: Power Gain, Efficiency as function of Pout

Document Number: STCV10370A2C Preliminary Datasheet V1.0

Figure 3: S11 / S21 output from network analyzer

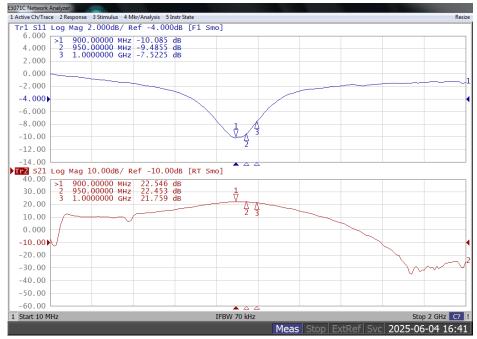


Figure 4: Picture of application board

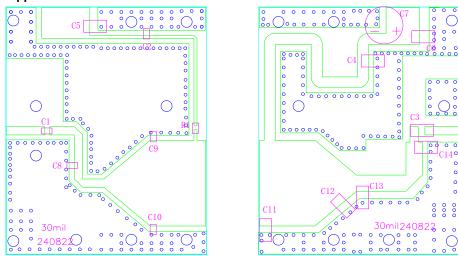
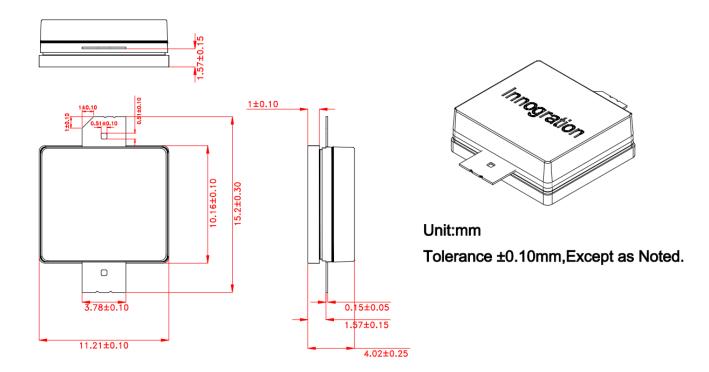



Table 4. Bill of materials of application board (PCB layout upon request, RO4350B 20mils)

Designator	Footprint	Comment	Quantity
C1	0603/0805	4.7pF	1
C2	0603/0805	47pF	1
C3, C4	1210	47pF	2
C5, C6	1210	10 uF/100V	2
C7		1000 uF/63V	1
C8	0805	2.0 pF	1
C9, C10	0603/0805	6.8 pF	2
C11	1210	5.6 pF	1
C12, C13, C14	1210	3.0 pF	3
R1	0603	10 Ω	1

Document Number: STCV10370A2C Preliminary Datasheet V1.0

Package Dimensions (Unit:mm)

Revision history

Table 4. Document revision history

Date	Revision	Datasheet Status
2025/6/5	V1.0	Preliminary datasheet creation

Application data based on: LSM-25-16

Notice

Specifications are subject to change without notice. Innogration believes the information within the data sheet to be reliable. Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose.

"Typical" parameter is the average values expected by Innogration in quantities and are provided for information purposes only. It can and do vary in different applications and related performance can vary over time. All parameters should be validated by customer's technical experts for each application.

Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility.

For any concerns or questions related to terms or conditions, please check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.