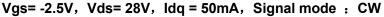
Document Number: XTAH80010G4 Preliminary Datasheet V1.0

Gallium Nitride 28V 10W, 1-8GHz RF Power Transistor


Description

The XTAH80010G4 is a 10W 28V GaN HEMT, implemented with patented match topology at both input and output side, enable extremely wideband applications with frequencies below 8GHz In typical 1-8G broadband application, It can deliver >8W CW.

There is no guarantee of performance when this part is used in applications designed Outside of these frequencies.

Please notice this device only makes use of half section of dual-path package, the rest half section is not connected

Typical performance (on Innogration wide band fixture with device soldered)

Freq(GHz)	Pin(dBm)	Pout(dBm)	Pout(W)	Ids(A)	Gain(dB)	Eff(%)	2 nd	3 rd
1.0	31.4	39.6	9.1	0.61	8.2	53.2	-6.5	-11.4
1.5	32.9	41.8	15.2	0.80	8.9	67.7	-15.0	-15.0
2.0	33.0	41.7	14.8	0.75	8.7	70.4	-17.8	-16.4
2.5	33.1	41.0	12.7	0.71	7.9	63.8		
3.0	33.2	39.9	9.8	0.72	6.7	48.8		
3.5	33.2	40.1	10.1	0.89	6.9	40.6		
4.0	33.3	40.2	10.6	0.90	7.0	41.9		
4.5	33.3	40.9	12.4	1.15	7.7	38.5		
5.0	33.2	41.6	14.4	1.13	8.4	45.6		
5.5	33.2	41.3	13.6	1.10	8.2	44.2		
6.0	33.3	41.3	13.4	1.03	8.0	46.6		
6.5	33.4	40.4	11.0	1.08	7.0	36.3		
7.0	33.4	40.6	11.6	1.09	7.2	37.9		
7.5	33.5	40.7	11.8	1.07	7.2	39.3		
8.0	33.3	39.8	9.5	0.98	6.5	34.6		

Applications and Features

- Suitable for wireless communication infrastructure, wideband amplifier, EMC testing, ISM etc.
- High Efficiency and Linear Gain Operations
- Thermally Enhanced Industry Standard Package
- High Reliability Metallization Process
- Excellent thermal Stability and Excellent Ruggedness
- Compliant to Restriction of Hazardous Substances (RoHS) Directive 2002/95/EC

Important Note: Proper Biasing Sequence for GaN HEMT Transistors

Turning the device ON

- 1. Set VGS to the pinch--off (VP) voltage, typically –5 V
- 2. Turn on VDS to nominal supply voltage (28V)
- 3. Increase VGS until IDS current is attained
- 4. Apply RF input power to desired level

Turning the device OFF

- 1. Turn RF power off
- 2. Reduce VGS down to VP, typically -5 V
- 3. Reduce VDS down to 0 V
- 4. Turn off VGS

Document Number: XTAH80010G4 Preliminary Datasheet V1.0

Table 1. Maximum Ratings (Not simultaneous, TC = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
DrainSource Voltage	V _{DSS}	150	Vdc
GateSource Voltage	V_{GS}	-10,+2	Vdc
Operating Voltage	V_{DD}	32	Vdc
Maximum Forward Gate Current	Igmax	2.5	mA
Storage Temperature Range	Tstg	-65 to +150	°C
Case Operating Temperature	Tc	+150	°C
Operating Junction Temperature(See note 1)	T₃	+225	°C

1. Continuous operation at maximum junction temperature will affect MTTF

Table 2. Thermal Characteristics

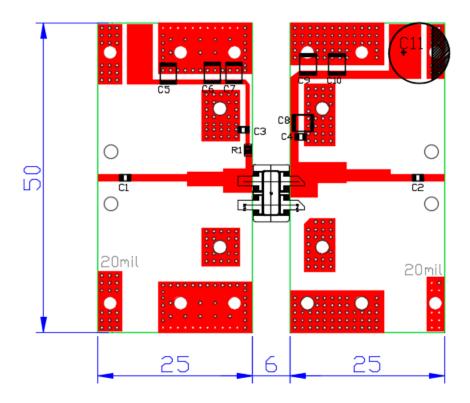
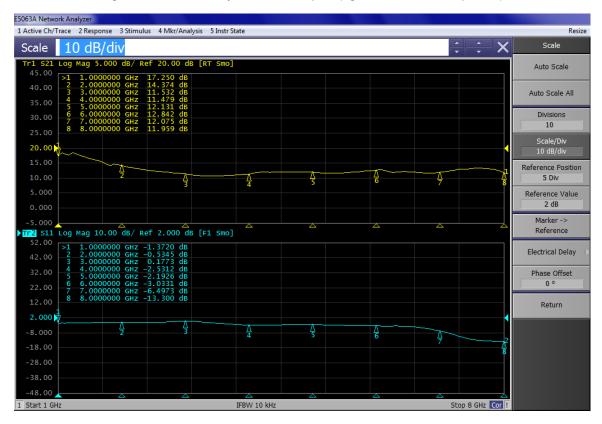

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction to Case	Rejc-dc	7.5	°C/W
T _C = 25°C, FEA	RθJC-DC	7.5	C/ VV

Table 3. Electrical Characteristics (T_C = 25 ^oC unless otherwise noted)

DC Characteristics


Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Drain-Source Breakdown Voltage	V _{GS} =-8V; I _{DS} =2.5mA	V_{DSS}	150			V
Gate Threshold Voltage	V _{DS} = 28V, I _D =2.5mA	V _{GS} (th)		-2.7		V
Gate Quiescent Voltage	V _{DS} =28V, I _{DS} =50mA, Measured in Functional Test	V _{GS(Q)}		-2.5		V

Reference Circuit of Test Fixture Assembly Diagram

Component	Description	Suggestion
C11	470uF/63V	
C5~C10	10uF	1210
C1	3.9pF	MQ100603
C2	2.4pF	MQ100805
C3, C4	200pF	MQ100805
РСВ		Rogers 4350B , Er = 3.48, thickness 20 mils,

Figure 2. Network Analyzer S11/S21 output (Vgs=-2.5V, Vds=28V, Idq=50mA)

Package Outline

Ceramic package; 4 leads

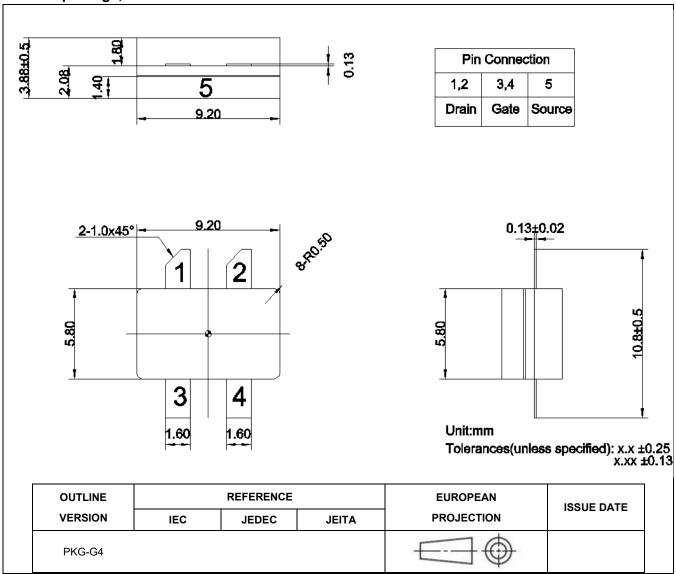


Figure 1. Package Outline PKG-G4

Document Number: XTAH80010G4 Preliminary Datasheet V1.0

Revision history

Table 5. Document revision history

Date	Revision	Datasheet Status
2025/7/15	V1.0	Preliminary datasheet creation

Application data based on YHG-25-23

Notice

Specifications are subject to change without notice. Innogration believes the information within the data sheet to be reliable. Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose.

"Typical" parameter is the average values expected by Innogration in quantities and are provided for information purposes only. It can and do vary in different applications and related performance can vary over time. All parameters should be validated by customer's technical experts for each application.

Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility.

For any concerns or questions related to terms or conditions, please check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.