Document Number: XTAH80010PD Preliminary Datasheet V1.0

Gallium Nitride 28V 10W, RF Power Transistor

Description

The XTAH80010PD is a 10W unmatched GaN HEMT, designed for multiple applications, up to 8000MHz. The transistor is available in a cost effective 4mm*4mm, surface mount, DFN package with 100% DC production test to ensure the quality and consistency. It can be used in CW, Pulse and multiple modulation mode.

•Typical Performance of class AB circuit (On different Innogration fixtures): V_{DD} =28 V, I_{DQ} =30 mA, CW

Freq	CW Signal			
(MHz)	P _{1dB}	Gain@ P _{1dB}	P _{3dB}	η _□ @P ₃
(1711 12)	(W)	(dB)	(W)	(%)
5100-5900	10	10	13	57
6900-7200	8	10	11	50
7200-7800	8	8	11	47

Typical Performance of class AB circuit (On different Innogration fixtures):

V_{DD} =28 V, I_{DQ} =30 mA, WCDMA 1 carrier CCDF=10dB

Frag	Pout=31dBm			
Freq (MHz)	CCDF	ACPR	Gain	ηο
(IVII IZ)	(dB)	(dB)	(dB)	(%)
5100-5900	9.7	-40	11	20
7200-7800	9.5	-35	8	18

Recommended driver: GTAH80004PD

Applications and Features

- Suitable for wireless communication infrastructure, wideband amplifier, EMC testing, ISM etc.
- High Efficiency and Linear Gain Operations
- Thermally Enhanced Industry Standard Package
- High Reliability Metallization Process
- · Excellent thermal Stability and Excellent Ruggedness
- Compliant to Restriction of Hazardous Substances (RoHS) Directive 2002/95/EC

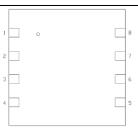
Important Note: Proper Biasing Sequence for GaN HEMT Transistors

Turning the device ON

- 1. Set VGS to the pinch--off (VP) voltage, typically –5 V
- 2. Turn on VDS to nominal supply voltage (28V)
- 3. Increase VGS until IDS current is attained
- 4. Apply RF input power to desired level

Turning the device OFF

- 1. Turn RF power off
- 2. Reduce VGS down to VP, typically -5 V
- 3. Reduce VDS down to 0 V
- 4. Turn off VGS


Pin Configuration and Description(Top view)

XTAH80010PD

Document Number: XTAH80010PD Preliminary Datasheet V1.0

Pin No.	Symbol	Description	
2, 3	RF IN /VGS	RF Input, Gate Bias	
6, 7	RF OUT /VDS	RF Output, Drain Bias	
1, 4, 5, 8	NC	No connection	
Package Base	GND	DC/RF Ground. Must be soldered to EVB ground plane over array of vias for thermal and RF performance. Solder voids under Pkg Base will result in excessive junction temperatures causing permanent damage.	

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
DrainSource Voltage	V _{DSS}	125	Vdc
GateSource Voltage	V _{GS}	-10,+2	Vdc
Operating Voltage	V _{DD}	40	Vdc
Maximum Forward Gate Current @ Tc = 25°C	Igmax	2.5	mA
Storage Temperature Range	Tstg	-65 to +150	°C
Case Operating Temperature	Tc	+150	°C
Operating Junction Temperature(See note 1)	T _J	+200	°C
Total Device Power Dissipation (Derated above 25°C, see note 2)	Pdiss	21	W

Note: 1. Continuous operation at maximum junction temperature will affect MTTF

Table 2. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction to Case	Rеjc		°C/W
T _C = 85°C, T _J =200°C, RF CW operation	RejC	5.5	C/VV

Table 3. Electrical Characteristics (T_C = 25°C unless otherwise noted)

DC Characteristics

Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Drain-Source Breakdown Voltage	V _{GS} =-8V; I _{DS} =2.5mA	V_{DSS}		125		V
Gate Threshold Voltage	V _{DS} = 28V, I _D =2.5mA	V _{GS} (th)		-2.7		V
Gate Quiescent Voltage	V _{DS} =28V, I _{DS} =30mA, Measured in Functional Test	$V_{GS(Q)}$		-2.46		V

^{2.}Bias Conditions should also satisfy the following expression: Pdiss < (Tj - Tc) / RJC and Tc = Tcase

5.1-5.9GHz

TYPICAL CHARACTERISTICS

Figure 2. Power Gain and Drain Efficiency as Function of Pulse Output Power

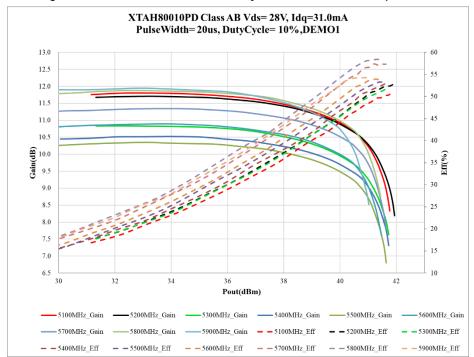
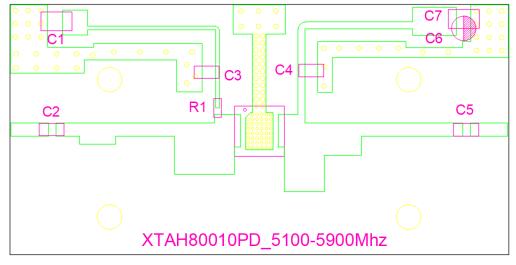



Figure 3. PCB layout and bill of materials

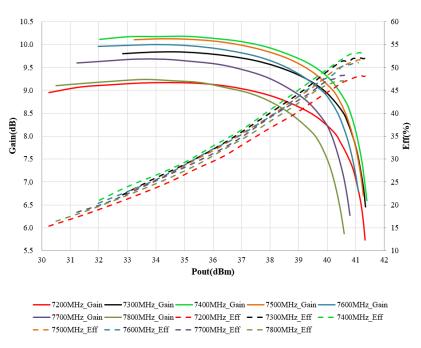
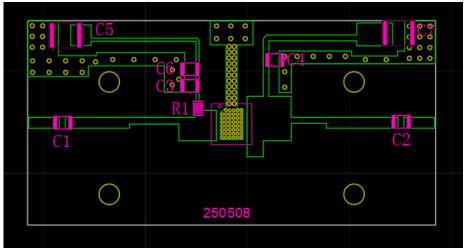
Reference	Footprint	Value	Quantity
C1, C6	1210	10uF/100V	2
C2,C3,C4,C5	0603	3.9pF	4
R1	0603	10Ω	1
C7		470uf/63V	1
U1	DFN4*4	XTAH80010PD	1

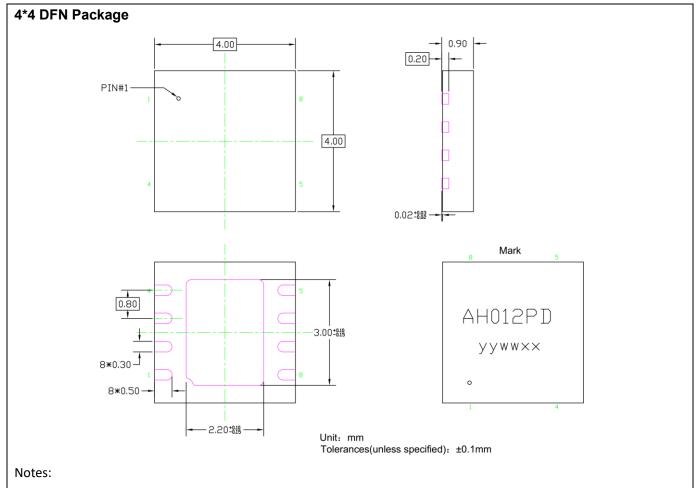
7.2-7.8GHz

TYPICAL CHARACTERISTICS

Figure 4. Power Gain and Drain Efficiency as Function of Pulse Output Power

XTAH80010PD Class AB Vds= 28V, Idq=8.4mA PulseWidth= 20us, DutyCycle= 10%,DEMO1


Figure 5. PCB layout and bill of materials

Component	Value	Quantity
U1	XTAH80010PD	1
C1、 C2、C3、 C4	1.8pF	4
C6	10nF/16V	1
C5、 C7	10uF/63V	2
R1	10 Ω	1

Document Number: XTAH80010PD Preliminary Datasheet V1.0

Package Dimensions

- 1. All dimensions are in mm;
- 2. The tolerances unless specified are ±0.1mm.

Recommended vias layout: (all in inches) 0.018 0.026 0.016

Document Number: XTAH80010PD Preliminary Datasheet V1.0

Revision history

Table 4. Document revision history

Date	Revision	Datasheet Status
2025/8/5	V1.0	Preliminary Datasheet Creation

Application data based on LBG-25-30, ZYX-25-27, CWZ-25-11

Notice

Specifications are subject to change without notice. Innogration believes the information within the data sheet to be reliable. Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose.

"Typical" parameter is the average values expected by Innogration in quantities and are provided for information purposes only. It can and do vary in different applications and related performance can vary over time. All parameters should be validated by customer's technical experts for each application.

Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility.

For any concerns or questions related to terms or conditions, please check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.