# 70W, 12.5V High Power RF LDMOS FETs

## **Description**

The MV1526GR is a 70-watt capable, high performance, unmatched LDMOS FET, designed for commercial and industrial applications with frequencies HF to 0.1 GHz.



•Typical 30MHz Performance at different bias

| CW, V <sub>gs</sub> =2.5V,I <sub>dq</sub> =200mA |          |         |          |         |                      |  |
|--------------------------------------------------|----------|---------|----------|---------|----------------------|--|
| Voltage(V)                                       | Pin(dBm) | Pout(W) | Gain(dB) | EFF (%) | 2 <sup>nd</sup> (dB) |  |
| 12.5                                             | 36.7     | 84.1    | 12.5     | 64      | -19                  |  |

#### **Features**

- High Efficiency and Linear Gain Operations
- Integrated ESD Protection
- Excellent thermal stability, low HCI drift

### **Suitable Applications**

- 2-30MHz (HF or Short wave communication)
- 30-88MHz (Ground communication)
- 54-88MHz (TV VHF I)
- 88-108MHz (FM)

- Large Positive and Negative Gate/Source Voltage Range for Improved Class C Operation
- Pb-free, RoHS-compliant

### **Table 1. Maximum Ratings**

| Rating                         | Symbol           | Value       | Unit |
|--------------------------------|------------------|-------------|------|
| DrainSource Voltage            | V <sub>DSS</sub> | +65         | Vdc  |
| GateSource Voltage             | $V_{GS}$         | -10 to +10  | Vdc  |
| Operating Voltage              | $V_{DD}$         | +24         | Vdc  |
| Storage Temperature Range      | Tstg             | -65 to +150 | °C   |
| Case Operating Temperature     | Tc               | +150        | °C   |
| Operating Junction Temperature | T₃               | +225        | °C   |

### **Table 2. Thermal Characteristics**

| Characteristic                                        | Symbol | Value | Unit |
|-------------------------------------------------------|--------|-------|------|
| Thermal Resistance, Junction to Case                  | D. 16  | 0.4   | 2000 |
| T <sub>C</sub> = 85°C, T <sub>J</sub> =200°C, DC test | RθJC   | 0.4   | °C/W |

### **Table 3. ESD Protection Characteristics**

| Test Methodology                  | Class   |  |
|-----------------------------------|---------|--|
| Human Body Model (per JESD22A114) | Class 2 |  |

#### Table 4. Electrical Characteristics (T<sub>A</sub> = 25 °C unless otherwise noted)

| Characteristic                             | Symbol               | Min | Тур | Max | Unit |
|--------------------------------------------|----------------------|-----|-----|-----|------|
| DC Characteristics                         |                      |     |     |     |      |
| Drain-Source Voltage                       | V                    | 65  | 70  |     | V    |
| V <sub>GS</sub> =0, I <sub>DS</sub> =1.0mA | V <sub>(BR)DSS</sub> | 00  | 70  |     | V    |
| Zero Gate Voltage Drain Leakage Current    | I <sub>DSS</sub>     |     |     | 1   | μΑ   |

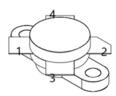
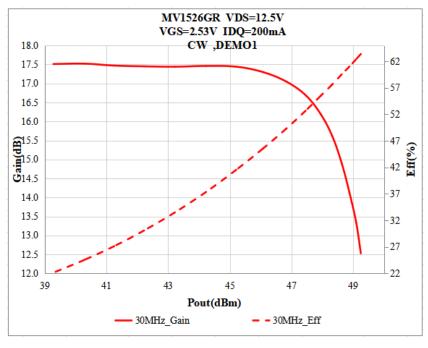
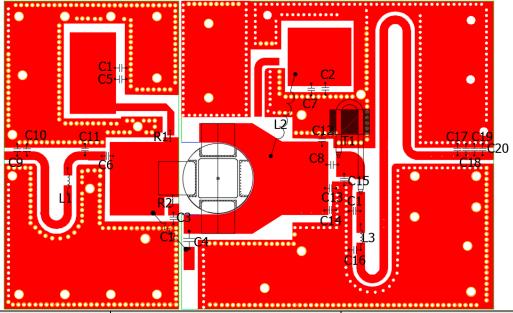
| (V <sub>DS</sub> = 28 V, V <sub>GS</sub> = 0 V)                                     |                      |          |   |       |
|-------------------------------------------------------------------------------------|----------------------|----------|---|-------|
| GateSource Leakage Current                                                          | GSS                  | <br>     | 1 | μА    |
| $(V_{GS} = 10 \text{ V}, V_{DS} = 0 \text{ V})$                                     | IGSS                 |          | ı | μΛ    |
| Gate Threshold Voltage                                                              | V <sub>GS</sub> (th) | <br>1.98 |   | V     |
| $(V_{DS} = 28V, I_D = 600 \mu A)$                                                   | V GS(U1)             | 1.90     |   | V     |
| Gate Quiescent Voltage                                                              | $V_{GS(Q)}$          | <br>2.5  |   | V     |
| $(V_{DD} = 28 \text{ V}, I_D = 300 \text{ mA}, \text{Measured in Functional Test})$ | V GS(Q)              | 2.3      |   | V     |
| Drain source on state resistance                                                    | Rds(on)              | 55       |   | mΩ    |
| $(V_{DS} = 0.1V, V_{GS} = 10 V)$                                                    | ixus(on)             | 33       |   | 11152 |
| Common Source Input Capacitance                                                     | C <sub>ISS</sub>     | 230      |   | pF    |
| $(V_{GS} = 0V, V_{DS} = 28 V, f = 1 MHz)$                                           | Oiss                 | 230      |   | ρı    |
| Common Source Output Capacitance                                                    | Coss                 | 100      |   | pF    |
| $(V_{GS} = 0V, V_{DS} = 28 V, f = 1 MHz)$                                           | Coss                 | 100      |   | μι    |
| Common Source Feedback Capacitance                                                  | C <sub>RSS</sub>     | 4        |   | nE    |
| $(V_{GS} = 0V, V_{DS} = 28 V, f = 1 MHz)$                                           | CRSS                 | 4        |   | pF    |

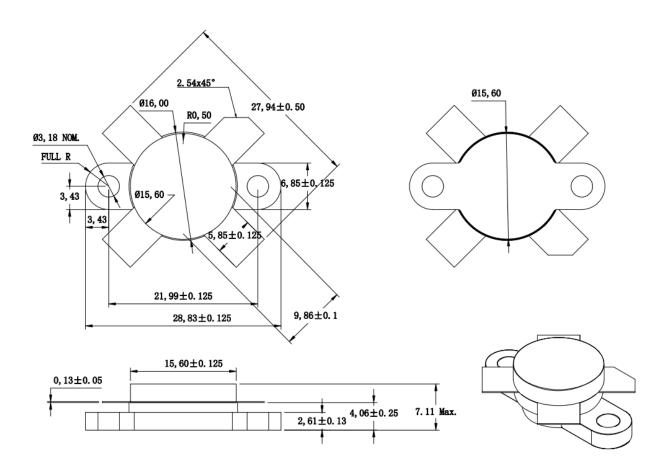
Load Mismatch (In Innogration Test Fixture, 50 ohm system):  $V_{DD} = 12.5 \text{ Vdc}$ ,  $I_{DQ} = 200 \text{ mA}$ , f = 100 MHz

| /SWR 20:1 at 100W Pulsed CW Output Power | No Device Degradation |
|------------------------------------------|-----------------------|
|------------------------------------------|-----------------------|

### Pin definitions

### 1: Gate 2-4: Drain Flange: source for grounding



Figure 2: Power gain, Eff as function of Pout:





| Component | Description                           | Suggestion                   |  |
|-----------|---------------------------------------|------------------------------|--|
| C1~C3     | 10uF 1210                             | Ceramic multilayer capacitor |  |
| C4        | 1000pF MQ101111                       |                              |  |
| C5,C6     | 10nF 1812                             | Ceramic multilayer capacitor |  |
| C7,C8     | 2.2uF 1812                            | Ceramic multilayer capacitor |  |
| C9,C11    | 240pF MQ301111                        |                              |  |
| C10       | 360pF MQ301111                        |                              |  |
| C12~C20   | 82pF MQ301111                         |                              |  |
| R1        | 10 Ω                                  | Chip Resistor                |  |
| R2        | 51 Ω                                  | Chip Resistor                |  |
| R3        | <b>220</b> Ω                          | Pulg-in Resistor             |  |
| L1        | Φ 0.8mm Inner diameter 3.5mm 6 turns  | DIY                          |  |
| L2        | φ 0.8mm Inner diameter 3.5mm 21 turns | DIY                          |  |
| L3        | Φ 0.8mm Inner diameter 3.5mm 4 turns  | DIY                          |  |
| T1        | 25ohm 70mm                            | RFSFBU-086-25 BN-61-202      |  |
| PCB       | 30mil                                 | Rogers 4350B                 |  |

## **Package Outline**



### **Revision history**

Table 5. Document revision history

| Date      | Revision | Datasheet Status               |
|-----------|----------|--------------------------------|
| 2025/7/29 | Rev 1.0  | Preliminary Datasheet Creation |
|           |          |                                |

Application data based on HL-25-26

#### **Disclaimers**

Specifications are subject to change without notice. Innogration believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Innogration for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Innogration . Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Innogration in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility. For any concerns or questions related to terms or conditions, pls check with Innogration and authorized distributors

Copyright © by Innogration (Suzhou) Co.,Ltd.