1200W, 50V L band RF LDMOS FETs # **Description** The MF141K2VP is a 1200W, high performance, internally matched LDMOS FET, designed for L band pulsed applications with frequencies 1.2-1.4GHz.It is featured for high power and high ruggedness. # It is recommended to use this device under pulse condition only Typical Pulse Performance (on innogration wide band test fixture with device soldered): Vds = 50 V, Idq = 100 mA, TA = 25 °C, Pulse condition: 10%, 20us | | = | | | | | | | |-------|-------|--------|--------|----------|-------|--------|--------| | Freq | P1dB | P1dB | P1dB | P1dB | P3dB | P3dB | P3dB | | (MHz) | (dBm) | (W) | Eff(%) | Gain(dB) | (dBm) | (W) | Eff(%) | | 1200 | 59.95 | 988.4 | 57.2 | 15.68 | 60.55 | 1135.1 | 56.4 | | 1250 | 60.12 | 1027.8 | 54.7 | 15.49 | 60.96 | 1248.8 | 55.5 | | 1300 | 60.58 | 1142.4 | 53.9 | 14.28 | 61.39 | 1378.5 | 54.9 | | 1350 | 60.64 | 1158.2 | 53.2 | 13.69 | 61.34 | 1360.5 | 53.5 | | 1400 | 59.84 | 964.9 | 52.5 | 14.66 | 60.6 | 1147.1 | 52.7 | # MF141K2VP # **Features** - High Efficiency and Linear Gain Operations - Integrated ESD Protection - Internally Matched for Ease of Use - Large Positive and Negative Gate/Source Voltage Range for Improved Class C Operation - Excellent thermal stability, low HCI drift - Compliant to Restriction of Hazardous Substances (RoHS) Directive 2002/95/EC ### **Table 1. Maximum Ratings** | Rating | Symbol | Value | Unit | |--------------------------------|-----------------|-------------|------| | DrainSource Voltage | $V_{ t DSS}$ | 115 | Vdc | | GateSource Voltage | $V_{\sf GS}$ | -10 to +10 | Vdc | | Operating Voltage | V_{DD} | +55 | Vdc | | Storage Temperature Range | Tstg | -65 to +150 | °C | | Case Operating Temperature | T _c | +150 | °C | | Operating Junction Temperature | T, | +225 | °C | ### **Table 2. Thermal Characteristics** | Characteristic | Symbol | Value | Unit | |--|--------|-------|------| | Thermal Resistance, Junction to Case, Case Temperature | | | | | 80°C,1300W Pout, Pulse width: 100us, duty cycle: 10%, | R⊕JC | 0.018 | °C/W | | Vds=50 V, IDQ = 100 mA | | | | ### **Table 3. ESD Protection Characteristics** | Test Methodology | Class | | | |-----------------------------------|---------|--|--| | Human Body Model (per JESD22A114) | Class 2 | | | # Table 4. Electrical Characteristics (TA = 25 °C unless otherwise noted) | Characteristic | Symbol | Min | Тур | Max | Unit | | |----------------|--------|-----|-----|-----|------|--| |----------------|--------|-----|-----|-----|------|--| # **MF141K2VP LDMOS TRANSISTOR** # DC Characteristics | Drain-Source Breakdown Voltage | V _{pss} | 115 | | | V | |--|----------------------|-----|-----|----|----| | (V _{GS} =0V; I _D =100uA) | V DSS | 113 | | | V | | Zero Gate Voltage Drain Leakage Current | 1 | | | 10 | ^ | | $(V_{DS} = 50 \text{ V}, V_{GS} = 0 \text{ V})$ | I _{DSS} | | | 10 | μΑ | | GateSource Leakage Current | | | | 4 | | | $(V_{GS} = 6 \text{ V}, V_{DS} = 0 \text{ V})$ | I _{GSS} | | | ı | μΑ | | Gate Threshold Voltage | V (II) | | 1.6 | | V | | $(V_{DS} = 50V, I_D = 600 \text{ uA})$ | V _{GS} (th) | | 1.6 | | V | | Gate Quiescent Voltage | V | | 3.8 | | V | | (V _{DD} = 50 V, I _{DQ} = 3500 mA, Measured in Functional Test) | $V_{GS(Q)}$ | | 3.0 | | V | # Reference Circuit of Test Fixture (Layout file upon request) PCB: Roger 4350B, 20mils Figure 1. Test Circuit Component Layout | Designator | Comment | Footprint | Quantity | |--------------------|------------|-----------|----------| | C1 | 10 pF | 0603/0805 | 1 | | C2 | 47 pF | 0603/0805 | 1 | | C3, C4, C5, | 47 pF | 1210 | 3 | | C6, C7 | 10uF/100V | 1210 | 2 | | C8 | 10uF/16V | 0603/0805 | 1 | | C9, C10 | 1000uF/63V | | 2 | | C11, C12, C13, C14 | 3.0pF | 0603/0805 | 1 | | C15 | 1.5 pF | 0603/0805 | 3 | | R1 | 10 Ω | 0603/0805 | 1 | # MF141K2VP LDMOS TRANSISTOR # TYPICAL CHARACTERISTICS Figure 2: Power gain and Efficiency as a Function of Pout Figure 3: Network analyzer S11 and S21 # MF141K2VP LDMOS TRANSISTOR # **Package Outline** # **Revision history** Table 6. Document revision history | Date | Revision | Datasheet Status | |-----------|----------|--------------------------------| | 2025/8/11 | Rev 1.0 | Preliminary Datasheet Creation | Application data based on LSM-25-23 # **Disclaimers** Specifications are subject to change without notice. Innogration believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Innogration for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Innogration . Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Innogration in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility. For any concerns or questions related to terms or conditions, pls check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.