Document Number: XTAH35251RC2 Preliminary Datasheet V1.0 # GaN 28V, 250W,3-4GHz RF Power Transistor Description The XTAH35251RC2 is a 250W, both input and output matched GaN HEMT, ideal for multiple applications from 3-4GHz, with excellent RF performance. It can support CW, pulse or any modulated signal. There is no guarantee of performance when this part is used outside of stated frequencies. Typical performance across 3.3-3.6GHz class AB application circuit with device soldered at 28V Vds=28V, Vgs=-2.61V,Idq=100mA; | Freq(MHz) | Pin(dBm) | Pout(dBm) | Pout(W) | IDS(A) | Gain(dB) | Eff(%) | 2nd(dBc) | 3rd(dBc) | |-----------|----------|-----------|---------|--------|----------|--------|----------|----------| | 3300 | 41 | 54.5 | 281.84 | 16.8 | 13.5 | 59.91 | -29.60 | -53.8 | | 3400 | 41 | 54.5 | 281.84 | 16.8 | 13.5 | 59.91 | -28.60 | -58.1 | | 3500 | 41 | 54.36 | 272.90 | 16.3 | 13.36 | 59.79 | -26.80 | -57.6 | | 3600 | 41 | 54.55 | 263.03 | 15.7 | 13.2 | 59.83 | -28.60 | -55.2 | ### **Applications** - S band power amplifier - ISM - UAV Jammer ### **Important Note: Proper Biasing Sequence for GaN HEMT Transistors** ### Turning the device ON - 1. Set VGS to the pinch--off (VP) voltage, typically -5 V - 2. Turn on VDS to nominal supply voltage - 3. Increase VGS until IDS current is attained - 4. Apply RF input power to desired level ### Turning the device OFF - 1. Turn RF power off - 2. Reduce VGS down to VP, typically -5 V - 3. Reduce VDS down to 0 V - 4. Turn off VGS **Table 1. Maximum Ratings** | Rating | Symbol | Value | Unit | |--------------------------------|------------------|-------------|------| | DrainSource Voltage | V _{DSS} | +150 | Vdc | | GateSource Voltage | V _{GS} | -10 to +2 | Vdc | | Operating Voltage | V_{DD} | 32 | Vdc | | Maximum gate current | Igs | 65.4 | mA | | Storage Temperature Range | Tstg | -65 to +150 | °C | | Case Operating Temperature | T _C | +150 | °C | | Operating Junction Temperature | TJ | +225 | °C | #### **Table 2. Thermal Characteristics** | Characteristic | Symbol | Value | Unit | |---|--------|-------|--------| | Thermal Resistance, Junction to Case by FEA | Do 10 | 0.55 | °C /W | | T _C = 25°C, at Tj=200°C | Rejc | 0.55 | -C /VV | #### Table 3. Electrical Characteristics (TA = 25℃ unless otherwise noted) #### DC Characteristics (measured on wafer prior to packaging) | Characteristic | Conditions | Symbol | Min | Тур | Max | Unit | |----------------|------------|--------|-----|-------|-----|------| | | | , | | , , , | | | Document Number: XTAH35251RC2 Preliminary Datasheet V1.0 | Drain-Source Breakdown Voltage | VGS=-8V; IDS=65.4mA | V_{DSS} | | 150 | | V | |--------------------------------|--|--------------|----|------|----|---| | Gate Threshold Voltage | VDS =10V, ID = 65.4mA | $V_{GS(th)}$ | -4 | | -2 | V | | Gate Quiescent Voltage | VDS =50V, IDS=500mA, Measured in Functional Test | $V_{GS(Q)}$ | | -2.5 | | V | #### **Ruggedness Characteristics** | Characteristic | Conditions | Symbol | Min | Тур | Max | Unit | |--------------------------|-----------------------------|--------|-----|------|-----|------| | Load mismatch capability | 3.4GHz, Pout=250W Pulsed CW | | | | | | | | All phase, | VSWR | | 10:1 | | | | | No device damages | | | | | | Figure 3: Network analyzer output, S11 and S21 (VDS=28V VGS=-2.5V IDQ=500mA) Figure 4: Picture of application board 3.3-3.6GHz class AB Document Number: XTAH35251RC2 Preliminary Datasheet V1.0 ### Table 4. Bill of materials of application board (PCB layout upon request) | Component | Description | Suggested Manufacturer | |-----------|--------------------|------------------------| | C8 | 470uF/63V | / | | C4,C5,C7 | 10uF | / | | C1, C3, | 10pF(MQ300805) | | | C2, C6, | 10pF(MQ301111) | | | R1 | Chip Resistor,10Ω | / | | РСВ | 30mil Rogers 4350B | / | # **Package Outline** Document Number: XTAH35251RC2 Preliminary Datasheet V1.0 ## **Revision history** #### **Table 4. Document revision history** | Date | Revision | Datasheet Status | |-----------|----------|--------------------------------| | 2025/8/26 | V1.0 | Preliminary Datasheet Creation | | | | | | | | | Application data based on: YHG-25-32 ### Notice Specifications are subject to change without notice. Innogration believes the information within the data sheet to be reliable. Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameter is the average values expected by Innogration in quantities and are provided for information purposes only. It can and do vary in different applications and related performance can vary over time. All parameters should be validated by customer's technical experts for each application. Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility. For any concerns or questions related to terms or conditions, please check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.