

Document Number: ITEH40001P3 Preliminary Datasheet V1.1

1W,28V Plastic RF LDMOS Gain Block

Description

The ITEH40001P3 is a 1-watt, highly rugged, high linear, LDMOS gain block, designed for any applications at frequencies up to 4GHz, in 6*5mm DFN plastic package, supporting surface mounted on PCB through high density grounding vias.

ITEH40001P3

Typical 3.4-3.6G RF performance with device soldered

V_{DS} = 28V, I_{DQ} =20mA(Vgs=2.77V), CW

Freq	P1dB	P1dB	P1dB	P1dB	P3dB	P3dB	P3dB
(MHz)	(dBm)	(W)	Eff(%)	Gain(dB)	(dBm)	(W)	Eff(%)
3400	33.17	2.1	50.2	14.55	33.85	2.4	52.0
3500	33.22	2.1	54.2	14.89	33.88	2.5	54.0
3600	33.01	2.0	49.3	14.1	33.72	2.4	51.1

Other general broadband reference designs:

- Sub 1GHz VHF and UHF: 100-1000MHz
- L band 1-2GHzS band: 2-2.7GHz

Suitable Applications

- Driver or pre-driver of PA lineup
- 2nd or 3rd stage of LNA lineup

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
DrainSource Voltage	$V_{\scriptscriptstyle DSS}$	+65	Vdc
GateSource Voltage	V_{GS}	-10 to +10	Vdc
Operating Voltage	V_{DD}	+28	Vdc
Storage Temperature Range	Tstg	-65 to +150	°C
Case Operating Temperature	T _c	+150	°C
Operating Junction Temperature	ΤJ	+225	°C

Table 2. Thermal Characteristics

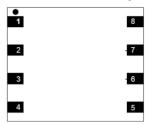
Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction to Case	Rejc	20	°C/W
T _C = 85°C, Pout=1W 2.1GHz	RejC	20	- 0/00

Table 3. ESD Protection Characteristics

Test Methodology	Class		
Human Body Model (per JESD22A114)	Class 2		

Table 4. Electrical Characteristics (TA = 25 °C unless otherwise noted)

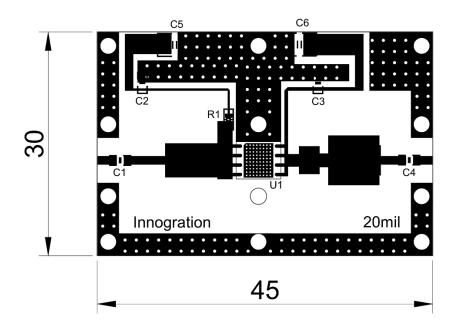
	Characteristic		Min	Тур	Max	Unit
DC Characteristics						
	Drain-Source Voltage	V		65		V
	V _{GS} =0, I _{DS} =100uA	$V_{(BR)DSS}$		65		V


Document Number: ITEH40001P3 Preliminary Datasheet V1.1

Zero Gate Voltage Drain Leakage Current	I _{DSS}			1	μА
$(V_{DS} = 28V, V_{GS} = 0 V)$.
GateSource Leakage Current				4	^
$(V_{GS} = 11 \text{ V}, V_{DS} = 0 \text{ V})$	I _{GSS}			ļ	μΑ
Gate Threshold Voltage	V (45)		2		V
$(V_{DS} = 28V, I_D = 600 \mu A)$	$V_{ ext{GS}}(ext{th})$	·	2		V
Gate Quiescent Voltage	$V_{GS(Q)}$		2.8		V
(V _{DD} = 28V, I _D = 70mA, Measured in Functional Test)	V _{GS(Q)}		2.0		V

Load Mismatch (In Innogration Test Fixture, 50 ohm system): $V_{DD} = 28Vdc$, $I_{DQ} = 70$ mA, f = 2100 MHz

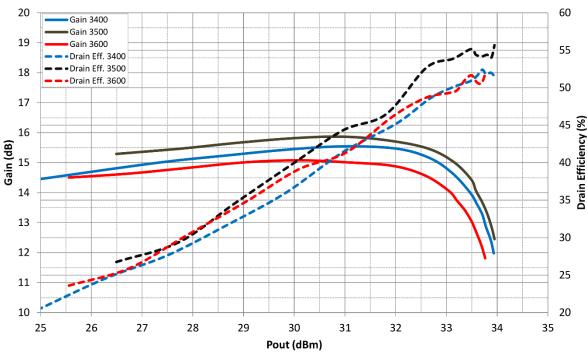
VSWR 10:1 at 1W pulse CW Output Power No Device Degradation


Pin Configuration and Description(Top view)

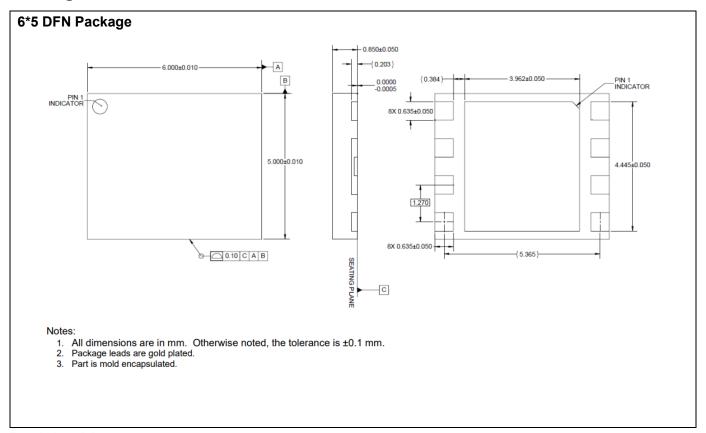
Pin No.	Symbol	Description
1,2,3,4	RF IN/VGS	Gate Bias/RF Input
5,6, 7,8	RF OUT /VDS	RF Output, Drain Bias
		DC/RF Ground. Must be soldered to EVB ground plane over array of vias
Backside metal	GND	for thermal and RF performance. Solder voids under Pkg Base will result in
		excessive junction temperatures causing permanent damage.

3.4-3.6GHz application board

Reference Circuit of Test Fixture Assembly Diagram 20mils RO4350B



Reference	Footprint	Value	Quantity
C1, C2, C3, C4	0603	10pF/250V	4
R1	0603	10R	1
C5, C6	1210	10uF/100V	2
U1	6*5mm	ITEH40001P3	1


Figure 3. Power Gain and Drain Efficiency as function of Power Output

Document Number: ITEH40001P3 Preliminary Datasheet V1.1

Package

Revision history

Table 7. Document revision history

Date	Revision	Datasheet Status
2024/9/11	Rev 1.0	Preliminary Datasheet
2025/9/2	Rev 1.1	Add 3.4-3.6G data as carrier info on 1st page

Application based on ZBB-25-23/24-36/42/43

Disclaimers

Specifications are subject to change without notice. Innogration believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Innogration for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Innogration . Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Innogration in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility. For any concerns or questions related to terms or conditions, pls check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.