




## GaN 50V, 350W, 915MHz RF Power Transistor



### Description

The XTAV10350A2C is a single ended 350 watt capable, GaN HEMT within UHF, ideal for ISM Applications at 915MHz. It can be used in CW, Pulse and any other modulation modes.

There is no guarantee of performance when this part is used in applications designed outside of these frequencies.

- Typical RF performance at selected 915MHz applications with device soldered on heatsink

$V_{DD} = 50\text{Vdc}$ ,  $V_{GS} = -3.1\text{V}$  CW

| Freq (MHz) | P1dB (dBm) | P1dB (W) | P1dB Eff(%) | P1dB Gain(dB) | P3dB (dBm) | P3dB (W) | P3dB Eff(%) |
|------------|------------|----------|-------------|---------------|------------|----------|-------------|
| 900        | 55.33      | 341.3    | 74.0        | 21.2          | 56.06      | 403      | 80          |
| 915        | 54.65      | 291.7    | 72.7        | 21.1          | 55.67      | 369      | 81          |
| 930        | 53.68      | 233.4    | 68.2        | 20.8          | 55.24      | 334      | 80          |

Recommended driver: **ITGV22010P3 (50V LDMOS)**

### Applications

- 915MHz RF Energy
- UHF PA
- P band PA

### Important Note: Proper Biasing Sequence for GaN HEMT Transistors

#### Turning the device ON

- Set  $V_{GS}$  to the pinch-off ( $V_P$ ) voltage, typically  $-5\text{V}$
- Turn on  $V_{DS}$  to nominal supply voltage
- Increase  $V_{GS}$  until  $IDS$  current is attained
- Apply RF input power to desired level

#### Turning the device OFF

- Turn RF power off
- Reduce  $V_{GS}$  down to  $V_P$ , typically  $-5\text{V}$
- Reduce  $V_{DS}$  down to  $0\text{V}$
- Turn off  $V_{GS}$

**Table 1. Maximum Ratings**

| Rating                         | Symbol    | Value       | Unit               |
|--------------------------------|-----------|-------------|--------------------|
| Drain-Source Voltage           | $V_{DSS}$ | +200        | $\text{Vdc}$       |
| Gate-Source Voltage            | $V_{GS}$  | -8 to +0.5  | $\text{Vdc}$       |
| Operating Voltage              | $V_{DD}$  | 55          | $\text{Vdc}$       |
| Maximum gate current           | $I_{GS}$  | 63          | $\text{mA}$        |
| Storage Temperature Range      | $T_{STG}$ | -65 to +150 | $^{\circ}\text{C}$ |
| Case Operating Temperature     | $T_c$     | +150        | $^{\circ}\text{C}$ |
| Operating Junction Temperature | $T_j$     | +225        | $^{\circ}\text{C}$ |

**Table 2. Thermal Characteristics**

| Characteristic                                                                                     | Symbol          | Value | Unit                          |
|----------------------------------------------------------------------------------------------------|-----------------|-------|-------------------------------|
| Thermal Resistance, Junction to Case by FEA<br>$T_c = 85^{\circ}\text{C}$ , at $P_d = 120\text{W}$ | $R_{\theta JC}$ | 0.8   | $^{\circ}\text{C} / \text{W}$ |

**Table 3. Electrical Characteristics (TA = 25°C unless otherwise noted)**
**DC Characteristics (measured on wafer prior to packaging)**

| Characteristic                 | Conditions                                       | Symbol              | Min | Typ | Max | Unit |
|--------------------------------|--------------------------------------------------|---------------------|-----|-----|-----|------|
| Drain-Source Breakdown Voltage | VGS=-8V; IDS=63mA                                | V <sub>DSS</sub>    |     | 200 |     | V    |
| Gate Threshold Voltage         | VDS =10V, ID = 63mA                              | V <sub>GS(th)</sub> | -4  | -   | -2  | V    |
| Gate Quiescent Voltage         | VDS =50V, IDS=300mA, Measured in Functional Test | V <sub>GS(0)</sub>  |     | --3 |     | V    |

**Ruggedness Characteristics**

| Characteristic           | Conditions                                                    | Symbol | Min | Typ  | Max | Unit |
|--------------------------|---------------------------------------------------------------|--------|-----|------|-----|------|
| Load mismatch capability | 915MHz, Pout=350W pulse CW<br>All phase,<br>No device damages | VSWR   |     | 10:1 |     |      |

## TYPICAL CHARACTERISTICS

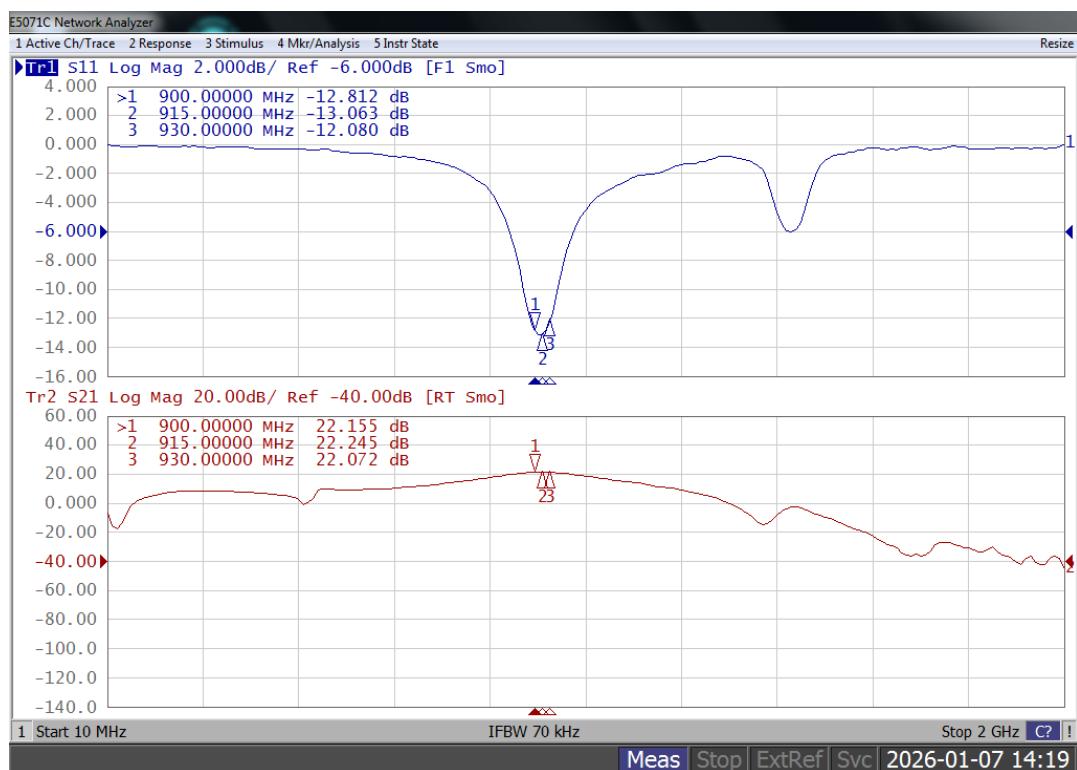
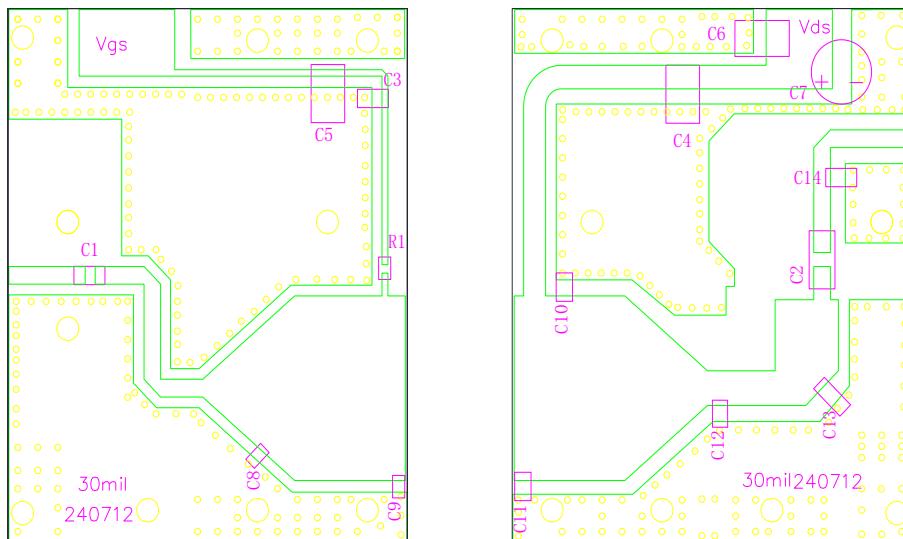
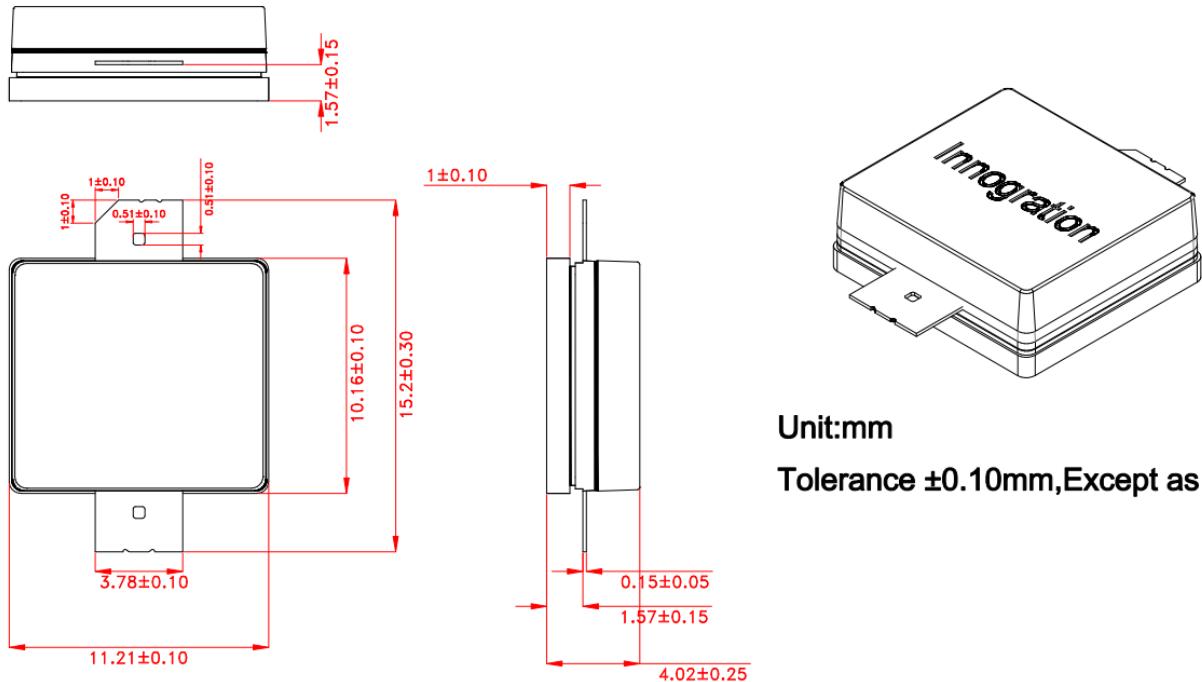



**Figure 2: S11/S21 output from Network analyser**


Figure 3: Reference design circuit (RO4350B 30mil, PCB DWG file upon request.)



| Designator | Comment   | Footprint | Quantity |
|------------|-----------|-----------|----------|
| C1, C8     | 6.8 pF    | 0603/0805 | 2        |
| C2, C4,    | 47 pF     | 1210      | 2        |
| C3         | 47 pF     | 0603/0805 | 1        |
| C5, C6     | 10uF/100V | 1210      | 2        |
| C7         | 470uF/63V |           | 1        |
| C9         | 8.2 pF    | 0805      | 1        |
| C10        | 3.0 pF    | 0805      | 1        |
| C11, C12   | 3.3 pF    | 0805      | 2        |
| C13        | 4.7 pF    | 0805      | 1        |
| C14        | 1.0 pF    | 0805      | 1        |
| R1         | 10 Ω      | 0603      | 1        |

## Package Dimensions (Unit:mm)



Unit:mm

Tolerance  $\pm 0.10\text{mm}$ , Except as Noted.

## Revision history

Table 1. Document revision history

| Date     | Revision | Datasheet Status      |
|----------|----------|-----------------------|
| 2026/1/7 | Rev 1.0  | Preliminary Datasheet |

Application data based on LSM-26-02

## Disclaimers

Specifications are subject to change without notice. Innogration believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Innogration for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Innogration. Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Innogration in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility. For any concerns or questions related to terms or conditions, pls check with Innogration and authorized distributors.

Copyright © by Innogration (Suzhou) Co.,Ltd.