

MF013K0EPX LDMOS TRANSISTOR

Document Number: MF013K0EPX
Advanced Datasheet V1.0

3000W, 65V High Power RF LDMOS FETs

Description

The MF013K0EPX is a 3000W capable, highly rugged, unmatched LDMOS FET, designed for commercial and industrial applications with frequencies HF to 250MHz.

It is featured for industry leading high power and high ruggedness, suitable for Industrial, Scientific and Medical application, as well as HF communication, VHF TV and Aerospace applications.

MF013K0EPX

Please notice that due to internal configuration of both input and output leads, dual path of this device must be configured as in-phase combination, NOT 180dgree Balun or 90 degree hybrid combination.

Freq(MHz)	Voltage(V)	Signal type	Pin(dBm)	Pout(W)	Power Gain(dB)	Eff(%)	Remark
13.56	65	Pulsed CW	45	3300	20	75	In phase combiner
13.56	50	CW	43.8	1900	19	75	In phase combiner

Features

- High breakdown voltage 190V to enable possible class E operation at lower Vdd up to 50V
- Qualified up to a maximum of VDS = 65 V Class AB
- Characterized from 36 V to 65 V to support a wide range of applications
- High Efficiency and Linear Gain Operations
- On chip RC network enable high stability and ruggedness
- Integrated ESD Protection
- Large Positive and Negative Gate/Source Voltage Range for Improved Class C Operation
- Excellent thermal stability, low HCl drift
- Compliant to Restriction of Hazardous Substances (RoHS) Directive 2002/95/EC

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
Drain—Source Voltage	V_{DSS}	190	Vdc
Gate—Source Voltage	V_{GS}	-10 to +10	Vdc
Operating Voltage	V_{DD}	+65	Vdc
Storage Temperature Range	T_{STG}	-65 to +150	°C
Case Operating Temperature	T_c	+150	°C
Operating Junction Temperature	T_j	+225	°C

Table 2. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction to Case ,Case Temperature 85°C, 2000W CW, 65 Vdc, IDQ = 240 mA	$R_{θJC}$	TBD	°C/W
Transient thermal impedance from junction to case $T_j = 150^{\circ} C$; $t_p = 100 \mu s$; Duty cycle = 20 %	Z_{th}	TBD	°C/W

Table 3. ESD Protection Characteristics

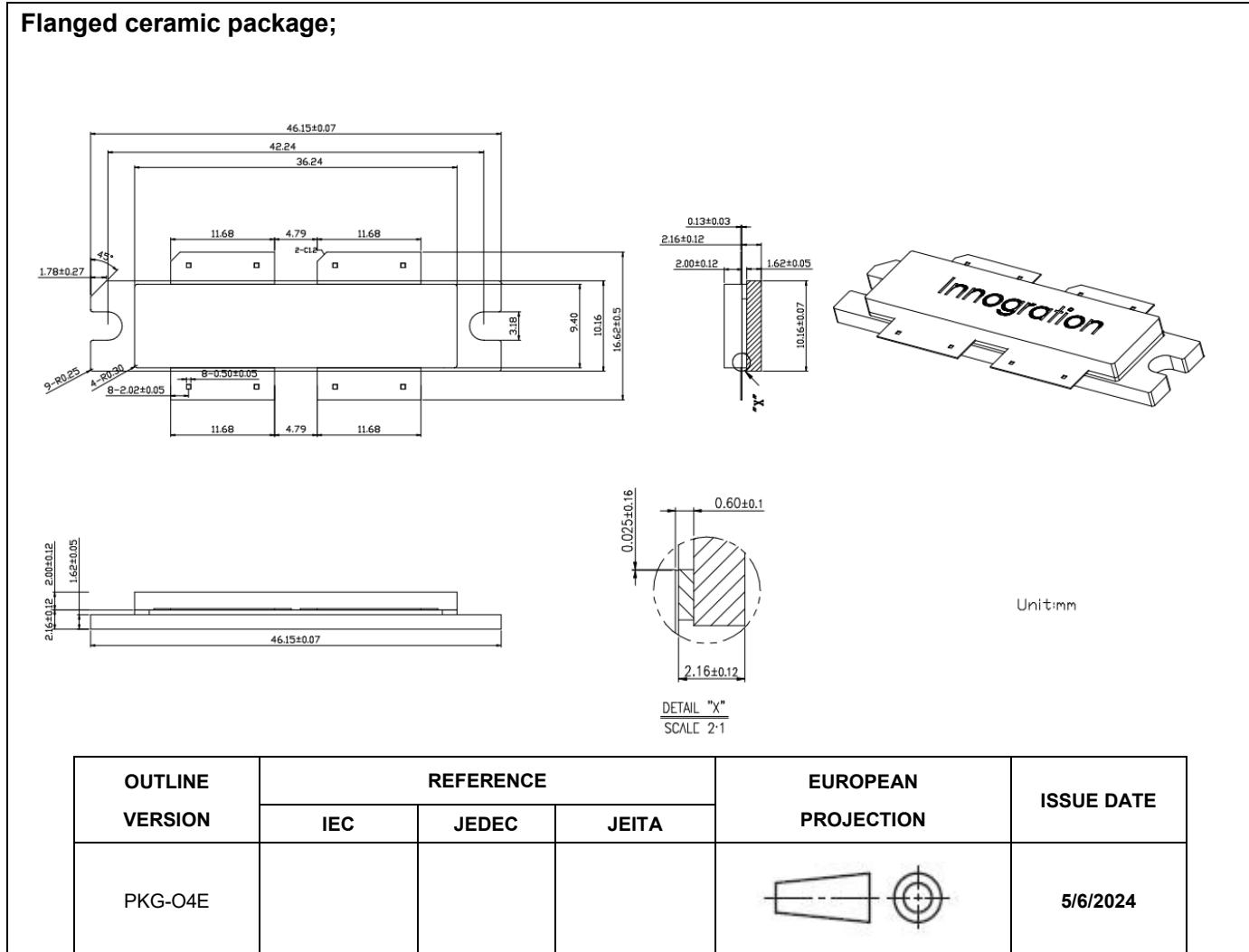
Test Methodology	Class

MF013K0EPX LDMOS TRANSISTOR

Document Number: MF013K0EPX
Advanced Datasheet V1.0

Human Body Model (per JESD22—A114)	Class 2				
------------------------------------	---------	--	--	--	--

Table 4. Electrical Characteristics (TA = 25 °C unless otherwise noted)


Characteristic	Symbol	Min	Typ	Max	Unit
DC Characteristics					
Drain-Source Voltage (V _{GS} =0V, I _{DS} =20.0mA)	V _{(BR)DSS}		190		V
Zero Gate Voltage Drain Leakage Current (V _{DS} = 65V, V _{GS} = 0 V)	I _{DSS}	—	—	1	µA
Gate—Source Leakage Current (V _{GS} = 10 V, V _{DS} = 0 V)	I _{GSS}	—	—	1	µA
Gate Threshold Voltage (V _{DS} = 65V, I _D = 600 µA)	V _{GS(th)}	—	2.6	—	V
Gate Quiescent Voltage (V _{DD} = 65 V, I _D = 240 mA, Measured in Functional Test)	V _{GS(Q)}	—	3	—	V
Drain source on state resistance (V _{DS} = 0.1V, V _{GS} = 10 V) Each section side of device measured	R _{DS(on)}		85		mΩ
Common Source Input Capacitance (V _{GS} = 0V, V _{DS} = 65 V, f = 1 MHz) Each section side of device measured	C _{ISS}		1700		pF
Common Source Output Capacitance (V _{GS} = 0V, V _{DS} = 65 V, f = 1 MHz) Each section side of device measured	C _{OSS}		250		pF
Common Source Feedback Capacitance (V _{GS} = 0V, V _{DS} = 65 V, f = 1 MHz) Each section side of device measured	C _{RSS}		5.5		pF

MF013K0EPX LDMOS TRANSISTOR

Document Number: MF013K0EPX
Advanced Datasheet V1.0

Package Outline

Flanged ceramic package;

MF013K0EPX LDMOS TRANSISTOR

Document Number: MF013K0EPX
Advanced Datasheet V1.0

Revision history

Table 5. Document revision history

Date	Revision	Datasheet Status
2026/1/9	Rev 1.0	Advanced Datasheet

Application data based on HL-26-01

Disclaimers

Specifications are subject to change without notice. Innogration believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Innogration for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Innogration. Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Innogration in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility. For any concerns or questions related to terms or conditions, pls check with Innogration and authorized distributors

Copyright © by Innogration (Suzhou) Co.,Ltd.